Gauss code |
O1O2O3U4O5O4U1U2U5O6U3U6 |
R3 orbit |
{'O1O2O3U4O5O4U1U2U5O6U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U1O4U5U2U3O6O5U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3U4U1O4U5U2U3O6O5U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 1 1 1 1],[ 3 0 1 3 3 1 1],[ 1 -1 0 2 1 0 1],[-1 -3 -2 0 0 -1 1],[-1 -3 -1 0 0 1 1],[-1 -1 0 1 -1 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 1 1 1 1 -1 -3],[-1 0 1 1 0 -1 -3],[-1 -1 0 0 1 0 -1],[-1 -1 0 0 -1 -1 -1],[-1 0 -1 1 0 -2 -3],[ 1 1 0 1 2 0 -1],[ 3 3 1 1 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,-1,1,3,-1,-1,0,1,3,0,-1,0,1,1,1,1,2,3,1] |
Phi over symmetry |
[-3,-1,1,1,1,1,1,1,1,3,3,0,1,1,2,0,-1,1,-1,-1,0] |
Phi of -K |
[-3,-1,1,1,1,1,1,1,1,3,3,0,1,1,2,0,-1,1,-1,-1,0] |
Phi of K* |
[-1,-1,-1,-1,1,3,-1,-1,0,1,3,0,-1,0,1,1,1,1,2,3,1] |
Phi of -K* |
[-3,-1,1,1,1,1,1,1,1,3,3,0,1,1,2,0,-1,1,-1,-1,0] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^3-3t |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2-4w^3z+25w^2z+27w |
Inner characteristic polynomial |
t^6+31t^4+72t^2+4 |
Outer characteristic polynomial |
t^7+45t^5+130t^3+16t |
Flat arrow polynomial |
-4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial |
-768*K1**4*K2**2 + 1152*K1**4*K2 - 1664*K1**4 + 576*K1**3*K2*K3 - 320*K1**3*K3 - 256*K1**2*K2**4 + 2688*K1**2*K2**3 - 8224*K1**2*K2**2 - 1024*K1**2*K2*K4 + 7488*K1**2*K2 - 128*K1**2*K3**2 - 4216*K1**2 + 704*K1*K2**3*K3 - 320*K1*K2**2*K3 - 256*K1*K2**2*K5 + 5424*K1*K2*K3 + 80*K1*K3*K4 - 1584*K2**4 - 288*K2**2*K3**2 - 8*K2**2*K4**2 + 808*K2**2*K4 - 2054*K2**2 + 144*K2*K3*K5 + 8*K2*K4*K6 - 784*K3**2 - 32*K4**2 - 8*K5**2 - 2*K6**2 + 2862 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}]] |
If K is slice |
False |