Gauss code |
O1O2O3U4O5O4U2U1U3O6U5U6 |
R3 orbit |
{'O1O2O3U4O5O4U2U1U3O6U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5O4U1U3U2O6O5U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3U4U5O4U1U3U2O6O5U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 1 1 1 1],[ 2 0 0 2 2 2 1],[ 2 0 0 1 2 1 1],[-1 -2 -1 0 -1 0 1],[-1 -2 -2 1 0 1 0],[-1 -2 -1 0 -1 0 1],[-1 -1 -1 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 1 -2 -2],[-1 0 1 1 0 -2 -2],[-1 -1 0 0 1 -1 -2],[-1 -1 0 0 1 -1 -2],[-1 0 -1 -1 0 -1 -1],[ 2 2 1 1 1 0 0],[ 2 2 2 2 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,-1,2,2,-1,-1,0,2,2,0,-1,1,2,-1,1,2,1,1,0] |
Phi over symmetry |
[-2,-2,1,1,1,1,0,1,1,1,2,1,2,2,2,-1,-1,0,0,-1,-1] |
Phi of -K |
[-2,-2,1,1,1,1,0,1,1,1,2,1,2,2,2,-1,-1,0,0,-1,-1] |
Phi of K* |
[-1,-1,-1,-1,2,2,-1,-1,0,2,2,0,-1,1,2,-1,1,2,1,1,0] |
Phi of -K* |
[-2,-2,1,1,1,1,0,1,1,1,2,1,2,2,2,-1,-1,0,0,-1,-1] |
Symmetry type of based matrix |
+ |
u-polynomial |
2t^2-4t |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+24t^4+46t^2 |
Outer characteristic polynomial |
t^7+36t^5+84t^3+2t |
Flat arrow polynomial |
4*K1**3 - 8*K1*K2 + K1 + 3*K3 + 1 |
2-strand cable arrow polynomial |
2304*K1**4*K2 - 4288*K1**4 + 1856*K1**3*K2*K3 - 512*K1**3*K3 - 128*K1**2*K2**4 + 1024*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 7520*K1**2*K2**2 - 768*K1**2*K2*K4 + 7088*K1**2*K2 - 2624*K1**2*K3**2 - 96*K1**2*K4**2 - 2176*K1**2 + 960*K1*K2**3*K3 - 2368*K1*K2**2*K3 - 512*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 7424*K1*K2*K3 + 2384*K1*K3*K4 + 160*K1*K4*K5 - 32*K2**6 + 224*K2**4*K4 - 1392*K2**4 - 96*K2**3*K6 - 1248*K2**2*K3**2 - 128*K2**2*K4**2 + 1720*K2**2*K4 - 2826*K2**2 + 976*K2*K3*K5 + 72*K2*K4*K6 - 1816*K3**2 - 648*K4**2 - 184*K5**2 - 6*K6**2 + 3110 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {5}, {2, 4}, {3}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {3}, {1, 2}]] |
If K is slice |
False |