Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1377

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,0,2,2,1,1,1,3,2,0,1,1,-1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1377']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+43t^5+116t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1377']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 480*K1**4*K2 - 1344*K1**4 + 32*K1**3*K2*K3 - 32*K1**3*K3 + 224*K1**2*K2**3 - 1776*K1**2*K2**2 + 2432*K1**2*K2 - 668*K1**2 + 1040*K1*K2*K3 - 72*K2**4 + 8*K2**2*K4 - 664*K2**2 - 132*K3**2 - 2*K4**2 + 728
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1377']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16337', 'vk6.16380', 'vk6.18062', 'vk6.18402', 'vk6.22672', 'vk6.22753', 'vk6.24505', 'vk6.24930', 'vk6.34614', 'vk6.34695', 'vk6.36638', 'vk6.37064', 'vk6.42307', 'vk6.42338', 'vk6.43924', 'vk6.44245', 'vk6.54608', 'vk6.54647', 'vk6.55890', 'vk6.56180', 'vk6.59097', 'vk6.59135', 'vk6.60414', 'vk6.60775', 'vk6.64639', 'vk6.64687', 'vk6.65520', 'vk6.65838', 'vk6.67994', 'vk6.68020', 'vk6.68606', 'vk6.68825', 'vk6.83069', 'vk6.83372', 'vk6.85831', 'vk6.86164', 'vk6.86834', 'vk6.89705', 'vk6.89930', 'vk6.90009']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O6U2U3U1O4U6U5
R3 orbit {'O1O2O3U4O5U1U2O4U6U5O6U3', 'O1O2O3U4O5O6U2U3U1O4U6U5'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U5O6U3U1U2O5O4U6
Gauss code of K* O1O2O3U4O5O6U3U1U2O4U6U5
Gauss code of -K* O1O2O3U4U5O6U2U3U1O5O4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 0 -1 2 2],[ 1 0 -1 1 -1 3 2],[ 2 1 0 1 1 2 1],[ 0 -1 -1 0 0 1 0],[ 1 1 -1 0 0 1 2],[-2 -3 -2 -1 -1 0 0],[-2 -2 -1 0 -2 0 0]]
Primitive based matrix [[ 0 2 2 0 -1 -1 -2],[-2 0 0 0 -2 -2 -1],[-2 0 0 -1 -1 -3 -2],[ 0 0 1 0 0 -1 -1],[ 1 2 1 0 0 1 -1],[ 1 2 3 1 -1 0 -1],[ 2 1 2 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,1,1,2,0,0,2,2,1,1,1,3,2,0,1,1,-1,1,1]
Phi over symmetry [-2,-2,0,1,1,2,0,0,2,2,1,1,1,3,2,0,1,1,-1,1,1]
Phi of -K [-2,-1,-1,0,2,2,0,0,1,2,3,-1,1,2,1,0,0,1,1,2,0]
Phi of K* [-2,-2,0,1,1,2,0,1,0,2,2,2,1,1,3,0,1,1,-1,0,0]
Phi of -K* [-2,-1,-1,0,2,2,1,1,1,1,2,-1,1,2,3,0,2,1,0,1,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial 4w^3z^2+17w^2z+19w
Inner characteristic polynomial t^6+29t^4+69t^2+4
Outer characteristic polynomial t^7+43t^5+116t^3+7t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial -256*K1**4*K2**2 + 480*K1**4*K2 - 1344*K1**4 + 32*K1**3*K2*K3 - 32*K1**3*K3 + 224*K1**2*K2**3 - 1776*K1**2*K2**2 + 2432*K1**2*K2 - 668*K1**2 + 1040*K1*K2*K3 - 72*K2**4 + 8*K2**2*K4 - 664*K2**2 - 132*K3**2 - 2*K4**2 + 728
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact