| Gauss code | 
O1O2O3U4O5O6U2U3U6O4U1U5 | 
| R3 orbit | 
{'O1O2O3U4O5O6U2U3U6O4U1U5'} | 
| R3 orbit length | 
1 | 
| Gauss code of -K | 
O1O2O3U4U3O5U6U1U2O6O4U5 | 
| Gauss code of K* | 
O1O2O3U4O5O6U5U1U2O4U6U3 | 
| Gauss code of -K* | 
O1O2O3U1U4O5U2U3U6O4O6U5 | 
| Diagrammatic symmetry type | 
c | 
| Flat genus of the diagram | 
3 | 
| If K is checkerboard colorable | 
False | 
| If K is almost classical | 
False | 
| Based matrix from Gauss code | 
[[ 0 -1 -2 0 -1 2 2],[ 1 0 -1 1 -1 2 2],[ 2 1 0 1 0 2 2],[ 0 -1 -1 0 -1 1 1],[ 1 1 0 1 0 2 2],[-2 -2 -2 -1 -2 0 0],[-2 -2 -2 -1 -2 0 0]] | 
| Primitive based matrix | 
[[ 0 2 2 0 -1 -1 -2],[-2 0 0 -1 -2 -2 -2],[-2 0 0 -1 -2 -2 -2],[ 0 1 1 0 -1 -1 -1],[ 1 2 2 1 0 1 0],[ 1 2 2 1 -1 0 -1],[ 2 2 2 1 0 1 0]] | 
| If based matrix primitive | 
True | 
| Phi of primitive based matrix | 
[-2,-2,0,1,1,2,0,1,2,2,2,1,2,2,2,1,1,1,-1,0,1] | 
| Phi over symmetry | 
[-2,-2,0,1,1,2,0,1,1,1,2,1,1,1,2,0,0,1,-1,0,1] | 
| Phi of -K | 
[-2,-1,-1,0,2,2,0,1,1,2,2,1,0,1,1,0,1,1,1,1,0] | 
| Phi of K* | 
[-2,-2,0,1,1,2,0,1,1,1,2,1,1,1,2,0,0,1,-1,0,1] | 
| Phi of -K* | 
[-2,-1,-1,0,2,2,0,1,1,2,2,1,1,2,2,1,2,2,1,1,0] | 
| Symmetry type of based matrix | 
c | 
| u-polynomial | 
-t^2+2t | 
| Normalized Jones-Krushkal polynomial | 
8z^2+29z+27 | 
| Enhanced Jones-Krushkal polynomial | 
8w^3z^2+29w^2z+27w | 
| Inner characteristic polynomial | 
t^6+31t^4+4t^2 | 
| Outer characteristic polynomial | 
t^7+45t^5+27t^3+2t | 
| Flat arrow polynomial | 
8*K1**3 - 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2 | 
| 2-strand cable arrow polynomial | 
-1536*K1**4*K2**2 + 3008*K1**4*K2 - 3648*K1**4 + 640*K1**3*K2*K3 - 224*K1**3*K3 - 448*K1**2*K2**4 + 2528*K1**2*K2**3 - 9440*K1**2*K2**2 - 448*K1**2*K2*K4 + 7128*K1**2*K2 - 1796*K1**2 + 768*K1*K2**3*K3 - 640*K1*K2**2*K3 - 32*K1*K2**2*K5 + 4920*K1*K2*K3 + 8*K1*K3*K4 - 64*K2**6 + 128*K2**4*K4 - 1496*K2**4 - 272*K2**2*K3**2 - 48*K2**2*K4**2 + 712*K2**2*K4 - 1248*K2**2 + 16*K2*K3*K5 - 532*K3**2 - 62*K4**2 + 2076 | 
| Genus of based matrix | 
1 | 
| Fillings of based matrix | 
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}]] | 
| If K is slice | 
False |