Gauss code |
O1O2O3U4O5O6U3U5U1O4U2U6 |
R3 orbit |
{'O1O2O3U4O5O6U3U5U1O4U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U2O5U3U6U1O4O6U5 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3U4U2O5U3U6U1O4O6U5 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 -1 -1 0 3],[ 1 0 0 -1 0 1 3],[ 0 0 0 0 -1 1 2],[ 1 1 0 0 0 1 1],[ 1 0 1 0 0 0 2],[ 0 -1 -1 -1 0 0 1],[-3 -3 -2 -1 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 0 0 -1 -1 -1],[-3 0 -1 -2 -1 -2 -3],[ 0 1 0 -1 -1 0 -1],[ 0 2 1 0 0 -1 0],[ 1 1 1 0 0 0 1],[ 1 2 0 1 0 0 0],[ 1 3 1 0 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,0,0,1,1,1,1,2,1,2,3,1,1,0,1,0,1,0,0,-1,0] |
Phi over symmetry |
[-3,0,0,1,1,1,1,2,1,2,3,1,1,0,1,0,1,0,0,-1,0] |
Phi of -K |
[-1,-1,-1,0,0,3,-1,0,0,1,3,0,0,1,1,1,0,2,1,2,1] |
Phi of K* |
[-3,0,0,1,1,1,1,2,1,2,3,1,1,0,1,0,1,0,0,-1,0] |
Phi of -K* |
[-1,-1,-1,0,0,3,-1,0,0,1,3,0,0,1,1,1,0,2,1,2,1] |
Symmetry type of based matrix |
+ |
u-polynomial |
-t^3+3t |
Normalized Jones-Krushkal polynomial |
6z^2+26z+29 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+26w^2z+29w |
Inner characteristic polynomial |
t^6+24t^4+42t^2+1 |
Outer characteristic polynomial |
t^7+36t^5+80t^3+7t |
Flat arrow polynomial |
4*K1**3 - 8*K1**2 - 2*K1*K2 - 2*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
192*K1**4*K2 - 1344*K1**4 - 128*K1**3*K3 - 256*K1**2*K2**4 + 1024*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 5824*K1**2*K2**2 - 576*K1**2*K2*K4 + 8720*K1**2*K2 - 64*K1**2*K4**2 - 5752*K1**2 + 256*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 128*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 5616*K1*K2*K3 + 624*K1*K3*K4 + 64*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1264*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 1584*K2**2*K4 - 3848*K2**2 + 64*K2*K3*K5 - 1320*K3**2 - 468*K4**2 - 16*K5**2 + 4002 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}]] |
If K is slice |
False |