Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1385

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,1,2,1,1,1,0,0,1,0,1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1385', '7.37963']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+32t^5+76t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1385']
2-strand cable arrow polynomial of the knot is: -896*K1**4*K2**2 + 1696*K1**4*K2 - 2912*K1**4 + 736*K1**3*K2*K3 - 320*K1**3*K3 - 768*K1**2*K2**4 + 3136*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 8448*K1**2*K2**2 - 448*K1**2*K2*K4 + 6792*K1**2*K2 - 128*K1**2*K3**2 - 1676*K1**2 + 1248*K1*K2**3*K3 - 2080*K1*K2**2*K3 - 160*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4992*K1*K2*K3 + 288*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 2328*K2**4 - 560*K2**2*K3**2 - 48*K2**2*K4**2 + 1656*K2**2*K4 - 1030*K2**2 + 200*K2*K3*K5 + 16*K2*K4*K6 - 656*K3**2 - 178*K4**2 - 20*K5**2 - 2*K6**2 + 1880
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1385']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.481', 'vk6.549', 'vk6.580', 'vk6.947', 'vk6.1045', 'vk6.1080', 'vk6.1638', 'vk6.1749', 'vk6.1804', 'vk6.2135', 'vk6.2232', 'vk6.2260', 'vk6.2554', 'vk6.2875', 'vk6.3041', 'vk6.3169', 'vk6.20418', 'vk6.20710', 'vk6.21783', 'vk6.22153', 'vk6.27769', 'vk6.28257', 'vk6.29292', 'vk6.29681', 'vk6.39199', 'vk6.39713', 'vk6.41957', 'vk6.46278', 'vk6.57280', 'vk6.57648', 'vk6.58521', 'vk6.61942']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O6U3U5U6O4U1U2
R3 orbit {'O1O2O3U4O5O6U3U5U6O4U1U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U3O4U5U6U1O5O6U4
Gauss code of K* O1O2O3U4O5O6U5U6U1O4U2U3
Gauss code of -K* O1O2O3U1U2O4U3U5U6O5O6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 -1 -1 0 2],[ 1 0 1 -1 0 0 2],[-1 -1 0 -1 -2 0 2],[ 1 1 1 0 -1 1 2],[ 1 0 2 1 0 1 1],[ 0 0 0 -1 -1 0 1],[-2 -2 -2 -2 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -2 -1 -1 -2 -2],[-1 2 0 0 -2 -1 -1],[ 0 1 0 0 -1 0 -1],[ 1 1 2 1 0 0 1],[ 1 2 1 0 0 0 -1],[ 1 2 1 1 -1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,2,1,1,2,2,0,2,1,1,1,0,1,0,-1,1]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,1,2,1,1,1,0,0,1,0,1,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,0,0,2,-1,0,1,1,1,1,1,1,1,-1]
Phi of K* [-2,-1,0,1,1,1,-1,1,1,1,2,1,1,1,0,0,1,0,1,-1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,1,2,-1,1,1,2,1,2,1,0,1,2]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 6z^2+25z+27
Enhanced Jones-Krushkal polynomial 6w^3z^2+25w^2z+27w
Inner characteristic polynomial t^6+24t^4+43t^2+4
Outer characteristic polynomial t^7+32t^5+76t^3+9t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -896*K1**4*K2**2 + 1696*K1**4*K2 - 2912*K1**4 + 736*K1**3*K2*K3 - 320*K1**3*K3 - 768*K1**2*K2**4 + 3136*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 8448*K1**2*K2**2 - 448*K1**2*K2*K4 + 6792*K1**2*K2 - 128*K1**2*K3**2 - 1676*K1**2 + 1248*K1*K2**3*K3 - 2080*K1*K2**2*K3 - 160*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4992*K1*K2*K3 + 288*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 2328*K2**4 - 560*K2**2*K3**2 - 48*K2**2*K4**2 + 1656*K2**2*K4 - 1030*K2**2 + 200*K2*K3*K5 + 16*K2*K4*K6 - 656*K3**2 - 178*K4**2 - 20*K5**2 - 2*K6**2 + 1880
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {4, 5}, {3}, {1, 2}]]
If K is slice False
Contact