Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1395

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,1,3,3,-1,1,1,1,1,0,0,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1395', '7.35321']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+37t^5+39t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1091', '6.1395']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 608*K1**4*K2 - 3248*K1**4 + 96*K1**3*K2*K3 - 256*K1**3*K3 + 32*K1**2*K2**3 - 2720*K1**2*K2**2 + 7728*K1**2*K2 - 144*K1**2*K3**2 - 4456*K1**2 - 96*K1*K2**2*K3 + 3344*K1*K2*K3 + 224*K1*K3*K4 - 48*K2**4 + 128*K2**2*K4 - 3504*K2**2 - 1048*K3**2 - 116*K4**2 + 3538
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1395']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17095', 'vk6.17338', 'vk6.20587', 'vk6.21996', 'vk6.23484', 'vk6.23823', 'vk6.28053', 'vk6.29512', 'vk6.35625', 'vk6.36070', 'vk6.39467', 'vk6.41668', 'vk6.42995', 'vk6.43307', 'vk6.46055', 'vk6.47723', 'vk6.55246', 'vk6.55498', 'vk6.57457', 'vk6.58624', 'vk6.59650', 'vk6.59998', 'vk6.62132', 'vk6.63098', 'vk6.65042', 'vk6.65241', 'vk6.66989', 'vk6.67854', 'vk6.68309', 'vk6.68459', 'vk6.69608', 'vk6.70301']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U3O5U2O6U4U6U5
R3 orbit {'O1O2O3U1O4U3O5U2O6U4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U6O5U2O4U1O6U3
Gauss code of K* O1O2O3U4U5U6O4U1O6U3O5U2
Gauss code of -K* O1O2O3U2O4U1O5U3O6U5U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 0 2 1],[ 2 0 2 1 2 1 0],[ 1 -2 0 0 2 2 1],[ 0 -1 0 0 1 1 1],[ 0 -2 -2 -1 0 2 1],[-2 -1 -2 -1 -2 0 0],[-1 0 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -2 -2 -1],[-1 0 0 -1 -1 -1 0],[ 0 1 1 0 1 0 -1],[ 0 2 1 -1 0 -2 -2],[ 1 2 1 0 2 0 -2],[ 2 1 0 1 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,1,2,2,1,1,1,1,0,-1,0,1,2,2,2]
Phi over symmetry [-2,-1,0,0,1,2,-1,0,1,3,3,-1,1,1,1,1,0,0,0,1,1]
Phi of -K [-2,-1,0,0,1,2,-1,0,1,3,3,-1,1,1,1,1,0,0,0,1,1]
Phi of K* [-2,-1,0,0,1,2,1,0,1,1,3,0,0,1,3,-1,-1,0,1,1,-1]
Phi of -K* [-2,-1,0,0,1,2,2,1,2,0,1,0,2,1,2,1,1,1,1,2,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 2z^2+22z+37
Enhanced Jones-Krushkal polynomial 2w^3z^2+22w^2z+37w
Inner characteristic polynomial t^6+27t^4+13t^2+1
Outer characteristic polynomial t^7+37t^5+39t^3+7t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -64*K1**4*K2**2 + 608*K1**4*K2 - 3248*K1**4 + 96*K1**3*K2*K3 - 256*K1**3*K3 + 32*K1**2*K2**3 - 2720*K1**2*K2**2 + 7728*K1**2*K2 - 144*K1**2*K3**2 - 4456*K1**2 - 96*K1*K2**2*K3 + 3344*K1*K2*K3 + 224*K1*K3*K4 - 48*K2**4 + 128*K2**2*K4 - 3504*K2**2 - 1048*K3**2 - 116*K4**2 + 3538
Genus of based matrix 0
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}]]
If K is slice True
Contact