Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1400

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,1,2,1,0,1,1,0,0,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1400', '7.35266']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+37t^5+66t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1400']
2-strand cable arrow polynomial of the knot is: 736*K1**4*K2 - 6032*K1**4 + 32*K1**3*K2*K3 - 544*K1**3*K3 - 3248*K1**2*K2**2 - 64*K1**2*K2*K4 + 11448*K1**2*K2 - 48*K1**2*K3**2 - 5292*K1**2 - 96*K1*K2**2*K3 + 4184*K1*K2*K3 + 184*K1*K3*K4 - 96*K2**4 + 176*K2**2*K4 - 4648*K2**2 - 1260*K3**2 - 108*K4**2 + 4674
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1400']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73300', 'vk6.73308', 'vk6.73441', 'vk6.73449', 'vk6.74076', 'vk6.74092', 'vk6.74647', 'vk6.74663', 'vk6.75445', 'vk6.75453', 'vk6.76110', 'vk6.76126', 'vk6.78181', 'vk6.78189', 'vk6.78411', 'vk6.78419', 'vk6.79086', 'vk6.79102', 'vk6.80006', 'vk6.80014', 'vk6.80157', 'vk6.80165', 'vk6.80590', 'vk6.80606', 'vk6.83814', 'vk6.83816', 'vk6.85124', 'vk6.85128', 'vk6.86602', 'vk6.86606', 'vk6.87388', 'vk6.87396']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5O6U2O5U3U4U6
R3 orbit {'O1O2O3U1O4U5O6U2O5U3U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U1O6U2O4U6O5U3
Gauss code of K* O1O2O3U4U5U1O4U2O6U3O5U6
Gauss code of -K* O1O2O3U4O5U1O4U2O6U3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 1 0 2],[ 2 0 1 2 2 1 2],[ 1 -1 0 0 1 1 2],[ 0 -2 0 0 1 0 1],[-1 -2 -1 -1 0 -1 0],[ 0 -1 -1 0 1 0 2],[-2 -2 -2 -1 0 -2 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -2 -2 -2],[-1 0 0 -1 -1 -1 -2],[ 0 1 1 0 0 0 -2],[ 0 2 1 0 0 -1 -1],[ 1 2 1 0 1 0 -1],[ 2 2 2 2 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,1,2,2,2,1,1,1,2,0,0,2,1,1,1]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,1,2,1,0,1,1,0,0,1,0,0,1]
Phi of -K [-2,-1,0,0,1,2,0,0,1,1,2,1,0,1,1,0,0,1,0,0,1]
Phi of K* [-2,-1,0,0,1,2,1,0,1,1,2,0,0,1,1,0,0,1,1,0,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,2,2,2,1,0,1,2,0,1,2,1,1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial z^2+22z+41
Enhanced Jones-Krushkal polynomial w^3z^2+22w^2z+41w
Inner characteristic polynomial t^6+27t^4+44t^2
Outer characteristic polynomial t^7+37t^5+66t^3+4t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial 736*K1**4*K2 - 6032*K1**4 + 32*K1**3*K2*K3 - 544*K1**3*K3 - 3248*K1**2*K2**2 - 64*K1**2*K2*K4 + 11448*K1**2*K2 - 48*K1**2*K3**2 - 5292*K1**2 - 96*K1*K2**2*K3 + 4184*K1*K2*K3 + 184*K1*K3*K4 - 96*K2**4 + 176*K2**2*K4 - 4648*K2**2 - 1260*K3**2 - 108*K4**2 + 4674
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact