Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,1,1,3,1,1,0,0,1,0,1,0,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1401'] |
Arrow polynomial of the knot is: -16*K1**2 + 8*K2 + 9 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1244', '6.1401', '6.2079', '6.2084'] |
Outer characteristic polynomial of the knot is: t^7+27t^5+45t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1401'] |
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 64*K1**4*K2**2 + 1600*K1**4*K2 - 6160*K1**4 + 320*K1**3*K2*K3 - 960*K1**3*K3 + 256*K1**2*K2**3 - 6416*K1**2*K2**2 - 288*K1**2*K2*K4 + 13392*K1**2*K2 - 784*K1**2*K3**2 - 6908*K1**2 - 736*K1*K2**2*K3 + 8320*K1*K2*K3 + 1264*K1*K3*K4 - 512*K2**4 + 928*K2**2*K4 - 6056*K2**2 - 2580*K3**2 - 584*K4**2 + 6222 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1401'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3640', 'vk6.3735', 'vk6.3930', 'vk6.4025', 'vk6.4495', 'vk6.4592', 'vk6.5881', 'vk6.6010', 'vk6.7131', 'vk6.7310', 'vk6.7401', 'vk6.7934', 'vk6.8055', 'vk6.9368', 'vk6.17924', 'vk6.18021', 'vk6.18744', 'vk6.24463', 'vk6.24867', 'vk6.25330', 'vk6.37483', 'vk6.43898', 'vk6.44214', 'vk6.44519', 'vk6.48280', 'vk6.48343', 'vk6.50069', 'vk6.50183', 'vk6.50579', 'vk6.50644', 'vk6.55869', 'vk6.60722'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4U1O5U4O6U5U6U3 |
R3 orbit | {'O1O2O3U2O4U1O5U4O6U5U6U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U1U4U5O4U6O5U3O6U2 |
Gauss code of K* | O1O2O3U4U5U3O5U6O4U1O6U2 |
Gauss code of -K* | O1O2O3U2O4U3O5U4O6U1U6U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 2 0 0 1],[ 2 0 0 3 1 1 0],[ 1 0 0 1 0 0 0],[-2 -3 -1 0 -1 0 1],[ 0 -1 0 1 0 1 1],[ 0 -1 0 0 -1 0 1],[-1 0 0 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 1 0 -1 -1 -3],[-1 -1 0 -1 -1 0 0],[ 0 0 1 0 -1 0 -1],[ 0 1 1 1 0 0 -1],[ 1 1 0 0 0 0 0],[ 2 3 0 1 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,-1,0,1,1,3,1,1,0,0,1,0,1,0,1,0] |
Phi over symmetry | [-2,-1,0,0,1,2,-1,0,1,1,3,1,1,0,0,1,0,1,0,1,0] |
Phi of -K | [-2,-1,0,0,1,2,1,1,1,3,1,1,1,2,2,-1,0,1,0,2,2] |
Phi of K* | [-2,-1,0,0,1,2,2,1,2,2,1,0,0,2,3,1,1,1,1,1,1] |
Phi of -K* | [-2,-1,0,0,1,2,0,1,1,0,3,0,0,0,1,-1,1,0,1,1,-1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 21z+43 |
Enhanced Jones-Krushkal polynomial | 21w^2z+43w |
Inner characteristic polynomial | t^6+17t^4+17t^2 |
Outer characteristic polynomial | t^7+27t^5+45t^3+7t |
Flat arrow polynomial | -16*K1**2 + 8*K2 + 9 |
2-strand cable arrow polynomial | -256*K1**6 - 64*K1**4*K2**2 + 1600*K1**4*K2 - 6160*K1**4 + 320*K1**3*K2*K3 - 960*K1**3*K3 + 256*K1**2*K2**3 - 6416*K1**2*K2**2 - 288*K1**2*K2*K4 + 13392*K1**2*K2 - 784*K1**2*K3**2 - 6908*K1**2 - 736*K1*K2**2*K3 + 8320*K1*K2*K3 + 1264*K1*K3*K4 - 512*K2**4 + 928*K2**2*K4 - 6056*K2**2 - 2580*K3**2 - 584*K4**2 + 6222 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {4, 5}, {1, 3}]] |
If K is slice | False |