Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1405

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,2,1,3,0,1,1,1,0,1,1,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1405']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+33t^5+59t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1405']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 448*K1**4*K2 - 3488*K1**4 + 192*K1**3*K2*K3 - 1344*K1**3*K3 + 32*K1**2*K2**3 - 2448*K1**2*K2**2 - 224*K1**2*K2*K4 + 8488*K1**2*K2 - 352*K1**2*K3**2 - 4856*K1**2 + 4632*K1*K2*K3 + 392*K1*K3*K4 - 80*K2**4 + 112*K2**2*K4 - 3600*K2**2 - 1408*K3**2 - 116*K4**2 + 3682
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1405']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16556', 'vk6.16647', 'vk6.18149', 'vk6.18483', 'vk6.22959', 'vk6.23078', 'vk6.24608', 'vk6.25019', 'vk6.34948', 'vk6.35067', 'vk6.36747', 'vk6.37164', 'vk6.42521', 'vk6.42630', 'vk6.44019', 'vk6.44329', 'vk6.54803', 'vk6.54885', 'vk6.55948', 'vk6.56245', 'vk6.59235', 'vk6.59311', 'vk6.60485', 'vk6.60849', 'vk6.64777', 'vk6.64840', 'vk6.65612', 'vk6.65917', 'vk6.68079', 'vk6.68142', 'vk6.68687', 'vk6.68896']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U5O6U3O5U1U6U4
R3 orbit {'O1O2O3U2O4U5O6U3O5U1U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U3O6U1O5U6O4U2
Gauss code of K* O1O2O3U1U4U5O4U3O6U2O5U6
Gauss code of -K* O1O2O3U4O5U2O4U1O6U5U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 2 0 1],[ 2 0 -1 2 3 1 1],[ 1 1 0 1 1 0 1],[ 0 -2 -1 0 1 0 0],[-2 -3 -1 -1 0 -1 -1],[ 0 -1 0 0 1 0 1],[-1 -1 -1 0 1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -1 -1 -3],[-1 1 0 0 -1 -1 -1],[ 0 1 0 0 0 -1 -2],[ 0 1 1 0 0 0 -1],[ 1 1 1 1 0 0 1],[ 2 3 1 2 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,1,1,3,0,1,1,1,0,1,2,0,1,-1]
Phi over symmetry [-2,-1,0,0,1,2,-1,1,2,1,3,0,1,1,1,0,1,1,0,1,1]
Phi of -K [-2,-1,0,0,1,2,2,0,1,2,1,0,1,1,2,0,1,1,0,1,0]
Phi of K* [-2,-1,0,0,1,2,0,1,1,2,1,0,1,1,2,0,1,1,0,0,2]
Phi of -K* [-2,-1,0,0,1,2,-1,1,2,1,3,0,1,1,1,0,1,1,0,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial z^2+20z+37
Enhanced Jones-Krushkal polynomial w^3z^2+20w^2z+37w
Inner characteristic polynomial t^6+23t^4+29t^2+1
Outer characteristic polynomial t^7+33t^5+59t^3+6t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -64*K1**6 + 448*K1**4*K2 - 3488*K1**4 + 192*K1**3*K2*K3 - 1344*K1**3*K3 + 32*K1**2*K2**3 - 2448*K1**2*K2**2 - 224*K1**2*K2*K4 + 8488*K1**2*K2 - 352*K1**2*K3**2 - 4856*K1**2 + 4632*K1*K2*K3 + 392*K1*K3*K4 - 80*K2**4 + 112*K2**2*K4 - 3600*K2**2 - 1408*K3**2 - 116*K4**2 + 3682
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}]]
If K is slice False
Contact