Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1409

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,-1,0,2,1,3,-1,1,1,0,-1,0,-1,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1409']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+33t^5+165t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1409']
2-strand cable arrow polynomial of the knot is: 256*K1**4*K2 - 2480*K1**4 - 384*K1**3*K3 - 2176*K1**2*K2**2 + 7144*K1**2*K2 - 16*K1**2*K3**2 - 4296*K1**2 - 64*K1*K2**2*K3 + 2728*K1*K2*K3 + 40*K1*K3*K4 - 56*K2**4 + 96*K2**2*K4 - 3072*K2**2 - 752*K3**2 - 34*K4**2 + 3064
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1409']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17101', 'vk6.17344', 'vk6.20589', 'vk6.21998', 'vk6.23492', 'vk6.23831', 'vk6.28051', 'vk6.29510', 'vk6.35633', 'vk6.36076', 'vk6.39469', 'vk6.41670', 'vk6.43001', 'vk6.43313', 'vk6.46053', 'vk6.47721', 'vk6.55240', 'vk6.55492', 'vk6.57459', 'vk6.58626', 'vk6.59642', 'vk6.59990', 'vk6.62130', 'vk6.63096', 'vk6.65034', 'vk6.65235', 'vk6.66991', 'vk6.67856', 'vk6.68303', 'vk6.68453', 'vk6.69606', 'vk6.70299']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U6O4U1O6U3U5U2
R3 orbit {'O1O2O3U4O5U6O4U1O6U3U5U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U4U1O5U3O6U5O4U6
Gauss code of K* O1O2O3U4U3U1O5U2O6U5O4U6
Gauss code of -K* O1O2O3U4O5U6O4U2O6U3U1U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 0 1 0],[ 2 0 2 0 2 0 3],[-1 -2 0 -1 -1 0 0],[ 0 0 1 0 -1 0 1],[ 0 -2 1 1 0 2 -1],[-1 0 0 0 -2 0 -1],[ 0 -3 0 -1 1 1 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 0 0 -1 -1 -2],[-1 0 0 -1 0 -2 0],[ 0 0 1 0 -1 1 -3],[ 0 1 0 1 0 -1 0],[ 0 1 2 -1 1 0 -2],[ 2 2 0 3 0 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,0,0,1,1,2,1,0,2,0,1,-1,3,1,0,2]
Phi over symmetry [-2,0,0,0,1,1,-1,0,2,1,3,-1,1,1,0,-1,0,-1,0,1,0]
Phi of -K [-2,0,0,0,1,1,-1,0,2,1,3,-1,1,1,0,-1,0,-1,0,1,0]
Phi of K* [-1,-1,0,0,0,2,0,-1,0,1,3,0,1,0,1,-1,1,0,-1,-1,2]
Phi of -K* [-2,0,0,0,1,1,0,2,3,0,2,-1,1,0,1,-1,2,1,1,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial z^2+20z+37
Enhanced Jones-Krushkal polynomial w^3z^2+20w^2z+37w
Inner characteristic polynomial t^6+27t^4+122t^2+4
Outer characteristic polynomial t^7+33t^5+165t^3+9t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial 256*K1**4*K2 - 2480*K1**4 - 384*K1**3*K3 - 2176*K1**2*K2**2 + 7144*K1**2*K2 - 16*K1**2*K3**2 - 4296*K1**2 - 64*K1*K2**2*K3 + 2728*K1*K2*K3 + 40*K1*K3*K4 - 56*K2**4 + 96*K2**2*K4 - 3072*K2**2 - 752*K3**2 - 34*K4**2 + 3064
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {3}, {1, 2}]]
If K is slice False
Contact