Gauss code |
O1O2O3O4O5U1O6U2U3U5U6U4 |
R3 orbit |
{'O1O2O3O4O5U1O6U2U3U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U6U1U3U4O6U5 |
Gauss code of K* |
O1O2O3O4O5U6U1U2U5U3O6U4 |
Gauss code of -K* |
O1O2O3O4O5U2O6U3U1U4U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -3 -1 3 2 3],[ 4 0 1 2 4 3 3],[ 3 -1 0 1 4 2 3],[ 1 -2 -1 0 3 1 2],[-3 -4 -4 -3 0 -1 1],[-2 -3 -2 -1 1 0 1],[-3 -3 -3 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 3 2 -1 -3 -4],[-3 0 1 -1 -3 -4 -4],[-3 -1 0 -1 -2 -3 -3],[-2 1 1 0 -1 -2 -3],[ 1 3 2 1 0 -1 -2],[ 3 4 3 2 1 0 -1],[ 4 4 3 3 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-2,1,3,4,-1,1,3,4,4,1,2,3,3,1,2,3,1,2,1] |
Phi over symmetry |
[-4,-3,-1,2,3,3,0,1,3,3,4,1,3,2,3,2,1,2,0,0,-1] |
Phi of -K |
[-4,-3,-1,2,3,3,0,1,3,3,4,1,3,2,3,2,1,2,0,0,-1] |
Phi of K* |
[-3,-3,-2,1,3,4,-1,0,2,3,4,0,1,2,3,2,3,3,1,1,0] |
Phi of -K* |
[-4,-3,-1,2,3,3,1,2,3,3,4,1,2,3,4,1,2,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t^2+t |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+86t^4+45t^2+1 |
Outer characteristic polynomial |
t^7+134t^5+148t^3+11t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial |
-512*K1**4*K2**2 + 1024*K1**4*K2 - 2528*K1**4 + 128*K1**3*K2**3*K3 - 256*K1**3*K2**2*K3 + 544*K1**3*K2*K3 - 288*K1**3*K3 - 384*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 2496*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 9648*K1**2*K2**2 + 160*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 864*K1**2*K2*K4 + 10288*K1**2*K2 - 608*K1**2*K3**2 - 48*K1**2*K4**2 - 6428*K1**2 - 128*K1*K2**4*K3 + 2240*K1*K2**3*K3 + 672*K1*K2**2*K3*K4 - 1760*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 640*K1*K2**2*K5 + 64*K1*K2*K3**3 - 320*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8992*K1*K2*K3 - 32*K1*K2*K4*K5 + 1176*K1*K3*K4 + 144*K1*K4*K5 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 576*K2**4*K4 - 3024*K2**4 + 160*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 1472*K2**2*K3**2 - 568*K2**2*K4**2 + 2400*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 3866*K2**2 - 64*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 736*K2*K3*K5 + 112*K2*K4*K6 + 16*K2*K5*K7 - 2304*K3**2 - 706*K4**2 - 140*K5**2 - 6*K6**2 + 5216 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}]] |
If K is slice |
False |