| Gauss code |
O1O2O3O4O5U1O6U2U3U6U5U4 |
| R3 orbit |
{'O1O2O3O4O5U1O6U2U3U6U5U4'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4O5U2U1U6U3U4O6U5 |
| Gauss code of K* |
O1O2O3O4O5U6U1U2U5U4O6U3 |
| Gauss code of -K* |
O1O2O3O4O5U3O6U2U1U4U5U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -4 -3 -1 3 3 2],[ 4 0 1 2 4 3 2],[ 3 -1 0 1 4 3 2],[ 1 -2 -1 0 3 2 1],[-3 -4 -4 -3 0 0 0],[-3 -3 -3 -2 0 0 0],[-2 -2 -2 -1 0 0 0]] |
| Primitive based matrix |
[[ 0 3 3 2 -1 -3 -4],[-3 0 0 0 -2 -3 -3],[-3 0 0 0 -3 -4 -4],[-2 0 0 0 -1 -2 -2],[ 1 2 3 1 0 -1 -2],[ 3 3 4 2 1 0 -1],[ 4 3 4 2 2 1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-3,-3,-2,1,3,4,0,0,2,3,3,0,3,4,4,1,2,2,1,2,1] |
| Phi over symmetry |
[-4,-3,-1,2,3,3,0,1,4,3,4,1,3,2,3,2,1,2,1,1,0] |
| Phi of -K |
[-4,-3,-1,2,3,3,0,1,4,3,4,1,3,2,3,2,1,2,1,1,0] |
| Phi of K* |
[-3,-3,-2,1,3,4,0,1,1,2,3,1,2,3,4,2,3,4,1,1,0] |
| Phi of -K* |
[-4,-3,-1,2,3,3,1,2,2,3,4,1,2,3,4,1,2,3,0,0,0] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^4-t^3-t^2+t |
| Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
| Enhanced Jones-Krushkal polynomial |
7w^3z^2+24w^2z+21w |
| Inner characteristic polynomial |
t^6+78t^4+15t^2 |
| Outer characteristic polynomial |
t^7+126t^5+76t^3+4t |
| Flat arrow polynomial |
4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + 2 |
| 2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 480*K1**4*K2 - 704*K1**4 + 160*K1**3*K2*K3 - 64*K1**3*K3 + 896*K1**2*K2**3 - 3808*K1**2*K2**2 - 864*K1**2*K2*K4 + 3632*K1**2*K2 - 192*K1**2*K3**2 - 64*K1**2*K3*K5 - 32*K1**2*K4**2 - 2384*K1**2 + 288*K1*K2**3*K3 + 352*K1*K2**2*K3*K4 - 800*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 512*K1*K2**2*K5 - 128*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 3840*K1*K2*K3 - 64*K1*K2*K4*K5 + 960*K1*K3*K4 + 216*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1168*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 416*K2**2*K3**2 - 440*K2**2*K4**2 + 1552*K2**2*K4 - 128*K2**2*K5**2 - 8*K2**2*K6**2 - 1622*K2**2 + 520*K2*K3*K5 + 152*K2*K4*K6 + 16*K2*K5*K7 - 944*K3**2 - 570*K4**2 - 136*K5**2 - 10*K6**2 + 1952 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}]] |
| If K is slice |
False |