Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1442

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,0,1,2,1,0,0,1,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1442']
Arrow polynomial of the knot is: -10*K1**2 + 5*K2 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.947', '6.1027', '6.1399', '6.1430', '6.1433', '6.1442', '6.1465', '6.1469', '6.1476', '6.1505', '6.1529', '6.1606', '6.1612', '6.1613', '6.1616', '6.1649', '6.1694', '6.1736', '6.1768', '6.1771', '6.1774', '6.1884', '6.1886', '6.1887', '6.1889', '6.1960', '6.1962']
Outer characteristic polynomial of the knot is: t^7+26t^5+61t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1442']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 576*K1**4*K2 - 3344*K1**4 + 288*K1**3*K2*K3 - 992*K1**3*K3 - 2464*K1**2*K2**2 - 128*K1**2*K2*K4 + 7600*K1**2*K2 - 464*K1**2*K3**2 - 4364*K1**2 + 4336*K1*K2*K3 + 408*K1*K3*K4 - 136*K2**4 + 136*K2**2*K4 - 3384*K2**2 - 1388*K3**2 - 126*K4**2 + 3508
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1442']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20015', 'vk6.20062', 'vk6.21285', 'vk6.21344', 'vk6.27066', 'vk6.27123', 'vk6.28769', 'vk6.28812', 'vk6.38463', 'vk6.38528', 'vk6.40650', 'vk6.40725', 'vk6.45347', 'vk6.45424', 'vk6.47114', 'vk6.47166', 'vk6.56830', 'vk6.56883', 'vk6.57962', 'vk6.58021', 'vk6.61348', 'vk6.61409', 'vk6.62522', 'vk6.62566', 'vk6.66550', 'vk6.66591', 'vk6.67337', 'vk6.67382', 'vk6.69196', 'vk6.69239', 'vk6.69945', 'vk6.69980']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2O4U1U3O6U5U6
R3 orbit {'O1O2O3U4O5U2O4U1U3O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4U1U3O6U2O5U6
Gauss code of K* O1O2U3O4O3U1U5U2O6U4O5U6
Gauss code of -K* O1O2U1O3O4U5O6U2O5U3U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 1 1],[ 2 0 1 2 1 2 1],[ 1 -1 0 0 1 1 1],[-1 -2 0 0 -1 0 1],[ 0 -1 -1 1 0 1 0],[-1 -2 -1 0 -1 0 1],[-1 -1 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 0 -2],[-1 -1 0 -1 0 -1 -1],[-1 0 1 0 -1 -1 -2],[ 0 1 0 1 0 -1 -1],[ 1 0 1 1 1 0 -1],[ 2 2 1 2 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,0,2,1,0,1,1,1,1,2,1,1,1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,0,1,2,1,0,0,1,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,0,1,1,1,2,0,1,2,1,0,0,1,0,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,1,1,2,0,0,1,1,0,2,1,0,1,0]
Phi of -K* [-2,-1,0,1,1,1,1,1,1,2,2,1,1,0,1,0,1,1,-1,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+18t^4+36t^2+4
Outer characteristic polynomial t^7+26t^5+61t^3+8t
Flat arrow polynomial -10*K1**2 + 5*K2 + 6
2-strand cable arrow polynomial -64*K1**6 + 576*K1**4*K2 - 3344*K1**4 + 288*K1**3*K2*K3 - 992*K1**3*K3 - 2464*K1**2*K2**2 - 128*K1**2*K2*K4 + 7600*K1**2*K2 - 464*K1**2*K3**2 - 4364*K1**2 + 4336*K1*K2*K3 + 408*K1*K3*K4 - 136*K2**4 + 136*K2**2*K4 - 3384*K2**2 - 1388*K3**2 - 126*K4**2 + 3508
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {5}, {4}, {2, 3}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {4}, {2, 3}, {1}], [{6}, {1, 5}, {4}, {2, 3}]]
If K is slice False
Contact