Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1444

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,1,2,1,0,1,1,1,0,1,1,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1444']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+26t^5+61t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1022', '6.1444']
2-strand cable arrow polynomial of the knot is: 128*K1**4*K2 - 2464*K1**4 - 160*K1**3*K3 - 304*K1**2*K2**2 + 2976*K1**2*K2 - 444*K1**2 + 336*K1*K2*K3 - 8*K2**4 + 8*K2**2*K4 - 832*K2**2 - 68*K3**2 - 2*K4**2 + 832
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1444']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11004', 'vk6.11085', 'vk6.12170', 'vk6.12279', 'vk6.18202', 'vk6.18538', 'vk6.24663', 'vk6.25088', 'vk6.30573', 'vk6.30670', 'vk6.31843', 'vk6.31892', 'vk6.36790', 'vk6.37243', 'vk6.44034', 'vk6.44375', 'vk6.51815', 'vk6.51884', 'vk6.52679', 'vk6.52775', 'vk6.56008', 'vk6.56282', 'vk6.60550', 'vk6.60892', 'vk6.63499', 'vk6.63545', 'vk6.63977', 'vk6.64023', 'vk6.65667', 'vk6.65952', 'vk6.68716', 'vk6.68925', 'vk6.83183', 'vk6.83596', 'vk6.84150', 'vk6.84347', 'vk6.86477', 'vk6.86481', 'vk6.88747', 'vk6.88902']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2O4U6U1O6U3U5
R3 orbit {'O1O2U3O4O5U2U6O3U1U4O6U5', 'O1O2O3U4O5U2O4U6U1O6U3U5'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U1O5U3U5O6U2O4U6
Gauss code of K* O1O2U1O3O4U2U5U3O6U4O5U6
Gauss code of -K* O1O2U3O4O3U5O6U1O5U2U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 0 2 -1],[ 1 0 1 1 0 1 1],[ 1 -1 0 0 1 1 1],[-1 -1 0 0 -1 0 -1],[ 0 0 -1 1 0 2 -1],[-2 -1 -1 0 -2 0 -2],[ 1 -1 -1 1 1 2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -2 -1 -1 -2],[-1 0 0 -1 0 -1 -1],[ 0 2 1 0 -1 0 -1],[ 1 1 0 1 0 -1 1],[ 1 1 1 0 1 0 1],[ 1 2 1 1 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,2,1,1,2,1,0,1,1,1,0,1,1,-1,-1]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,1,2,1,0,1,1,1,0,1,1,-1,-1]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,1,1,2,-1,0,2,2,0,1,1,0,0,1]
Phi of K* [-2,-1,0,1,1,1,1,0,1,2,2,0,1,1,2,0,1,0,-1,-1,1]
Phi of -K* [-1,-1,-1,0,1,2,-1,-1,1,1,2,-1,1,0,1,0,1,1,1,2,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial z^2+14z+25
Enhanced Jones-Krushkal polynomial w^3z^2+14w^2z+25w
Inner characteristic polynomial t^6+18t^4+40t^2+4
Outer characteristic polynomial t^7+26t^5+61t^3+7t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial 128*K1**4*K2 - 2464*K1**4 - 160*K1**3*K3 - 304*K1**2*K2**2 + 2976*K1**2*K2 - 444*K1**2 + 336*K1*K2*K3 - 8*K2**4 + 8*K2**2*K4 - 832*K2**2 - 68*K3**2 - 2*K4**2 + 832
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {3}, {1, 2}], [{6}, {1, 5}, {3, 4}, {2}]]
If K is slice False
Contact