Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1445

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,0,1,2,2,0,1,0,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1445']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+26t^5+93t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1445']
2-strand cable arrow polynomial of the knot is: 1376*K1**4*K2 - 3184*K1**4 - 128*K1**3*K3 + 96*K1**2*K2**3 - 4448*K1**2*K2**2 + 8016*K1**2*K2 - 48*K1**2*K3**2 - 4368*K1**2 - 96*K1*K2**2*K3 + 3456*K1*K2*K3 + 120*K1*K3*K4 - 120*K2**4 + 120*K2**2*K4 - 3296*K2**2 - 792*K3**2 - 66*K4**2 + 3360
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1445']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11221', 'vk6.11302', 'vk6.12482', 'vk6.12595', 'vk6.18226', 'vk6.18563', 'vk6.24695', 'vk6.25112', 'vk6.30895', 'vk6.31020', 'vk6.32079', 'vk6.32200', 'vk6.36814', 'vk6.37275', 'vk6.44057', 'vk6.44398', 'vk6.51979', 'vk6.52076', 'vk6.52860', 'vk6.52909', 'vk6.56031', 'vk6.56307', 'vk6.60581', 'vk6.60920', 'vk6.63639', 'vk6.63686', 'vk6.64067', 'vk6.64114', 'vk6.65690', 'vk6.65984', 'vk6.68738', 'vk6.68948']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2O4U6U1O6U5U3
R3 orbit {'O1O2O3U4O5U2O4U6U1O6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5U3U5O6U2O4U6
Gauss code of K* O1O2U1O3O4U2U5U4O6U3O5U6
Gauss code of -K* O1O2U3O4O3U5O6U2O5U1U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 0 1 -1],[ 1 0 1 2 0 0 1],[ 1 -1 0 1 1 0 1],[-2 -2 -1 0 -1 -1 -2],[ 0 0 -1 1 0 1 -1],[-1 0 0 1 -1 0 -1],[ 1 -1 -1 2 1 1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 -1 0 0 -1],[ 0 1 1 0 -1 0 -1],[ 1 1 0 1 0 -1 1],[ 1 2 0 0 1 0 1],[ 1 2 1 1 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,1,1,1,2,2,1,0,0,1,1,0,1,1,-1,-1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,0,1,2,2,0,1,0,-1,-1,1]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,1,2,1,-1,0,2,2,0,1,1,0,1,0]
Phi of K* [-2,-1,0,1,1,1,0,1,1,1,2,0,1,2,2,0,1,0,-1,-1,1]
Phi of -K* [-1,-1,-1,0,1,2,-1,-1,1,1,2,-1,1,0,1,0,0,2,1,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+18t^4+56t^2
Outer characteristic polynomial t^7+26t^5+93t^3+3t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial 1376*K1**4*K2 - 3184*K1**4 - 128*K1**3*K3 + 96*K1**2*K2**3 - 4448*K1**2*K2**2 + 8016*K1**2*K2 - 48*K1**2*K3**2 - 4368*K1**2 - 96*K1*K2**2*K3 + 3456*K1*K2*K3 + 120*K1*K3*K4 - 120*K2**4 + 120*K2**2*K4 - 3296*K2**2 - 792*K3**2 - 66*K4**2 + 3360
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact