Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1447

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,2,3,1,0,1,1,1,1,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1447']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+28t^5+48t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1447']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 2272*K1**4*K2 - 5776*K1**4 + 448*K1**3*K2*K3 - 2304*K1**3*K3 + 96*K1**2*K2**3 - 4512*K1**2*K2**2 - 192*K1**2*K2*K4 + 10352*K1**2*K2 - 1136*K1**2*K3**2 - 4852*K1**2 - 384*K1*K2**2*K3 + 6944*K1*K2*K3 + 1176*K1*K3*K4 - 120*K2**4 + 312*K2**2*K4 - 4224*K2**2 - 2068*K3**2 - 354*K4**2 + 4384
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1447']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4065', 'vk6.4098', 'vk6.5303', 'vk6.5336', 'vk6.7437', 'vk6.7466', 'vk6.8934', 'vk6.8967', 'vk6.10117', 'vk6.10286', 'vk6.10311', 'vk6.14552', 'vk6.15264', 'vk6.15393', 'vk6.15776', 'vk6.16191', 'vk6.29857', 'vk6.29890', 'vk6.33910', 'vk6.33995', 'vk6.34219', 'vk6.34376', 'vk6.48453', 'vk6.49152', 'vk6.50205', 'vk6.50232', 'vk6.51609', 'vk6.53961', 'vk6.54026', 'vk6.54188', 'vk6.54462', 'vk6.63320']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2O4U6U5O6U1U3
R3 orbit {'O1O2O3U4O5U2O4U6U5O6U1U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U3O4U5U4O6U2O5U6
Gauss code of K* O1O2U1O3O4U3U5U4O6U2O5U6
Gauss code of -K* O1O2U3O4O3U5O6U4O5U1U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 0 1 -1],[ 1 0 0 2 1 1 0],[ 1 0 0 1 1 0 0],[-2 -2 -1 0 -1 0 -3],[ 0 -1 -1 1 0 1 0],[-1 -1 0 0 -1 0 -1],[ 1 0 0 3 0 1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 -1 -2 -3],[-1 0 0 -1 0 -1 -1],[ 0 1 1 0 -1 -1 0],[ 1 1 0 1 0 0 0],[ 1 2 1 1 0 0 0],[ 1 3 1 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,1,1,2,3,1,0,1,1,1,1,0,0,0,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,2,3,1,0,1,1,1,1,0,0,0,0]
Phi of -K [-1,-1,-1,0,1,2,0,0,0,1,1,0,0,2,2,1,1,0,0,1,1]
Phi of K* [-2,-1,0,1,1,1,1,1,0,1,2,0,1,1,2,1,0,0,0,0,0]
Phi of -K* [-1,-1,-1,0,1,2,0,0,0,1,3,0,1,0,1,1,1,2,1,1,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+20t^4+31t^2+4
Outer characteristic polynomial t^7+28t^5+48t^3+8t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -64*K1**6 + 2272*K1**4*K2 - 5776*K1**4 + 448*K1**3*K2*K3 - 2304*K1**3*K3 + 96*K1**2*K2**3 - 4512*K1**2*K2**2 - 192*K1**2*K2*K4 + 10352*K1**2*K2 - 1136*K1**2*K3**2 - 4852*K1**2 - 384*K1*K2**2*K3 + 6944*K1*K2*K3 + 1176*K1*K3*K4 - 120*K2**4 + 312*K2**2*K4 - 4224*K2**2 - 2068*K3**2 - 354*K4**2 + 4384
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {5}, {4}, {1, 2}]]
If K is slice False
Contact