Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1464

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,0,1,1,3,1,1,1,2,0,0,0,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1464']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+51t^5+58t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1464']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 1120*K1**4*K2 - 4096*K1**4 + 96*K1**3*K2*K3 - 384*K1**3*K3 - 2512*K1**2*K2**2 - 64*K1**2*K2*K4 + 7592*K1**2*K2 - 64*K1**2*K3**2 - 3480*K1**2 - 96*K1*K2**2*K3 + 2536*K1*K2*K3 + 88*K1*K3*K4 - 56*K2**4 + 120*K2**2*K4 - 3048*K2**2 - 672*K3**2 - 46*K4**2 + 3028
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1464']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16953', 'vk6.17194', 'vk6.20538', 'vk6.21938', 'vk6.23349', 'vk6.23642', 'vk6.27993', 'vk6.29459', 'vk6.35401', 'vk6.35820', 'vk6.39394', 'vk6.41585', 'vk6.42874', 'vk6.43151', 'vk6.45970', 'vk6.47644', 'vk6.55104', 'vk6.55359', 'vk6.57416', 'vk6.58588', 'vk6.59502', 'vk6.59796', 'vk6.62083', 'vk6.63063', 'vk6.64953', 'vk6.65159', 'vk6.66952', 'vk6.67812', 'vk6.68242', 'vk6.68383', 'vk6.69564', 'vk6.70260']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U2O5U3U6U4O6U5
R3 orbit {'O1O2O3U1O4U2O5U3U6U4O6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4O5U6U5U1O4U2O6U3
Gauss code of K* O1O2O3U2O4U5U6U1O5U3O6U4
Gauss code of -K* O1O2O3U4O5U1O6U3U5U6O4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 2 2 -1],[ 2 0 1 2 2 1 2],[ 1 -1 0 1 2 2 0],[ 0 -2 -1 0 1 2 -1],[-2 -2 -2 -1 0 0 -2],[-2 -1 -2 -2 0 0 -2],[ 1 -2 0 1 2 2 0]]
Primitive based matrix [[ 0 2 2 0 -1 -1 -2],[-2 0 0 -1 -2 -2 -2],[-2 0 0 -2 -2 -2 -1],[ 0 1 2 0 -1 -1 -2],[ 1 2 2 1 0 0 -1],[ 1 2 2 1 0 0 -2],[ 2 2 1 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,1,1,2,0,1,2,2,2,2,2,2,1,1,1,2,0,1,2]
Phi over symmetry [-2,-2,0,1,1,2,0,0,1,1,3,1,1,1,2,0,0,0,0,-1,0]
Phi of -K [-2,-1,-1,0,2,2,-1,0,0,2,3,0,0,1,1,0,1,1,1,0,0]
Phi of K* [-2,-2,0,1,1,2,0,0,1,1,3,1,1,1,2,0,0,0,0,-1,0]
Phi of -K* [-2,-1,-1,0,2,2,1,2,2,1,2,0,1,2,2,1,2,2,2,1,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+37t^4+37t^2+4
Outer characteristic polynomial t^7+51t^5+58t^3+7t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -64*K1**6 + 1120*K1**4*K2 - 4096*K1**4 + 96*K1**3*K2*K3 - 384*K1**3*K3 - 2512*K1**2*K2**2 - 64*K1**2*K2*K4 + 7592*K1**2*K2 - 64*K1**2*K3**2 - 3480*K1**2 - 96*K1*K2**2*K3 + 2536*K1*K2*K3 + 88*K1*K3*K4 - 56*K2**4 + 120*K2**2*K4 - 3048*K2**2 - 672*K3**2 - 46*K4**2 + 3028
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {4}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}]]
If K is slice False
Contact