Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,0,1,1,3,1,1,1,2,0,0,0,0,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1464'] |
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971'] |
Outer characteristic polynomial of the knot is: t^7+51t^5+58t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1464'] |
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 1120*K1**4*K2 - 4096*K1**4 + 96*K1**3*K2*K3 - 384*K1**3*K3 - 2512*K1**2*K2**2 - 64*K1**2*K2*K4 + 7592*K1**2*K2 - 64*K1**2*K3**2 - 3480*K1**2 - 96*K1*K2**2*K3 + 2536*K1*K2*K3 + 88*K1*K3*K4 - 56*K2**4 + 120*K2**2*K4 - 3048*K2**2 - 672*K3**2 - 46*K4**2 + 3028 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1464'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16953', 'vk6.17194', 'vk6.20538', 'vk6.21938', 'vk6.23349', 'vk6.23642', 'vk6.27993', 'vk6.29459', 'vk6.35401', 'vk6.35820', 'vk6.39394', 'vk6.41585', 'vk6.42874', 'vk6.43151', 'vk6.45970', 'vk6.47644', 'vk6.55104', 'vk6.55359', 'vk6.57416', 'vk6.58588', 'vk6.59502', 'vk6.59796', 'vk6.62083', 'vk6.63063', 'vk6.64953', 'vk6.65159', 'vk6.66952', 'vk6.67812', 'vk6.68242', 'vk6.68383', 'vk6.69564', 'vk6.70260'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4U2O5U3U6U4O6U5 |
R3 orbit | {'O1O2O3U1O4U2O5U3U6U4O6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4O5U6U5U1O4U2O6U3 |
Gauss code of K* | O1O2O3U2O4U5U6U1O5U3O6U4 |
Gauss code of -K* | O1O2O3U4O5U1O6U3U5U6O4U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 0 2 2 -1],[ 2 0 1 2 2 1 2],[ 1 -1 0 1 2 2 0],[ 0 -2 -1 0 1 2 -1],[-2 -2 -2 -1 0 0 -2],[-2 -1 -2 -2 0 0 -2],[ 1 -2 0 1 2 2 0]] |
Primitive based matrix | [[ 0 2 2 0 -1 -1 -2],[-2 0 0 -1 -2 -2 -2],[-2 0 0 -2 -2 -2 -1],[ 0 1 2 0 -1 -1 -2],[ 1 2 2 1 0 0 -1],[ 1 2 2 1 0 0 -2],[ 2 2 1 2 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,0,1,1,2,0,1,2,2,2,2,2,2,1,1,1,2,0,1,2] |
Phi over symmetry | [-2,-2,0,1,1,2,0,0,1,1,3,1,1,1,2,0,0,0,0,-1,0] |
Phi of -K | [-2,-1,-1,0,2,2,-1,0,0,2,3,0,0,1,1,0,1,1,1,0,0] |
Phi of K* | [-2,-2,0,1,1,2,0,0,1,1,3,1,1,1,2,0,0,0,0,-1,0] |
Phi of -K* | [-2,-1,-1,0,2,2,1,2,2,1,2,0,1,2,2,1,2,2,2,1,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 3z^2+24z+37 |
Enhanced Jones-Krushkal polynomial | 3w^3z^2+24w^2z+37w |
Inner characteristic polynomial | t^6+37t^4+37t^2+4 |
Outer characteristic polynomial | t^7+51t^5+58t^3+7t |
Flat arrow polynomial | -6*K1**2 + 3*K2 + 4 |
2-strand cable arrow polynomial | -64*K1**6 + 1120*K1**4*K2 - 4096*K1**4 + 96*K1**3*K2*K3 - 384*K1**3*K3 - 2512*K1**2*K2**2 - 64*K1**2*K2*K4 + 7592*K1**2*K2 - 64*K1**2*K3**2 - 3480*K1**2 - 96*K1*K2**2*K3 + 2536*K1*K2*K3 + 88*K1*K3*K4 - 56*K2**4 + 120*K2**2*K4 - 3048*K2**2 - 672*K3**2 - 46*K4**2 + 3028 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {4}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}]] |
If K is slice | False |