Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1485

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,0,0,1,0,1,1,1,1,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1485']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+32t^5+45t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1485']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 320*K1**4*K2 - 1856*K1**4 + 64*K1**3*K2*K3 - 768*K1**3*K3 + 128*K1**2*K2**3 - 2560*K1**2*K2**2 - 160*K1**2*K2*K4 + 6336*K1**2*K2 - 608*K1**2*K3**2 - 48*K1**2*K4**2 - 4372*K1**2 - 288*K1*K2**2*K3 - 160*K1*K2*K3*K4 + 4416*K1*K2*K3 + 1008*K1*K3*K4 + 96*K1*K4*K5 - 152*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 408*K2**2*K4 - 3092*K2**2 + 144*K2*K3*K5 + 32*K2*K4*K6 - 1488*K3**2 - 406*K4**2 - 44*K5**2 - 4*K6**2 + 3260
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1485']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11533', 'vk6.11864', 'vk6.12879', 'vk6.13186', 'vk6.20348', 'vk6.21691', 'vk6.27648', 'vk6.29194', 'vk6.31312', 'vk6.31707', 'vk6.32466', 'vk6.32881', 'vk6.39086', 'vk6.41342', 'vk6.45838', 'vk6.47505', 'vk6.52320', 'vk6.52580', 'vk6.53160', 'vk6.53460', 'vk6.57207', 'vk6.58426', 'vk6.61817', 'vk6.62946', 'vk6.63825', 'vk6.63957', 'vk6.64267', 'vk6.64463', 'vk6.66820', 'vk6.67690', 'vk6.69456', 'vk6.70180']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U2U5O6O5U4U3U6
R3 orbit {'O1O2O3U1O4U2U5O6O5U4U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U5O6O4U6U2O5U3
Gauss code of K* O1O2O3U4U5U2O4U1O5O6U3U6
Gauss code of -K* O1O2O3U4U1O4O5U3O6U2U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 1 1],[ 2 0 1 2 1 2 1],[ 1 -1 0 2 1 1 2],[-1 -2 -2 0 0 -1 1],[ 0 -1 -1 0 0 0 0],[-1 -2 -1 1 0 0 1],[-1 -1 -2 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 1 0 -2 -2],[-1 -1 -1 0 0 -2 -1],[ 0 0 0 0 0 -1 -1],[ 1 1 2 2 1 0 -1],[ 2 2 2 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,1,2,-1,0,2,2,0,2,1,1,1,1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,0,0,1,0,1,1,1,1,-1,-1]
Phi of -K [-2,-1,0,1,1,1,0,1,1,1,2,0,0,1,0,1,1,1,1,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,1,0,2,-1,1,0,1,1,1,1,0,1,0]
Phi of -K* [-2,-1,0,1,1,1,1,1,1,2,2,1,2,1,2,0,0,0,-1,-1,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+20z+29
Enhanced Jones-Krushkal polynomial 3w^3z^2+20w^2z+29w
Inner characteristic polynomial t^6+24t^4+16t^2
Outer characteristic polynomial t^7+32t^5+45t^3+4t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -64*K1**6 + 320*K1**4*K2 - 1856*K1**4 + 64*K1**3*K2*K3 - 768*K1**3*K3 + 128*K1**2*K2**3 - 2560*K1**2*K2**2 - 160*K1**2*K2*K4 + 6336*K1**2*K2 - 608*K1**2*K3**2 - 48*K1**2*K4**2 - 4372*K1**2 - 288*K1*K2**2*K3 - 160*K1*K2*K3*K4 + 4416*K1*K2*K3 + 1008*K1*K3*K4 + 96*K1*K4*K5 - 152*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 408*K2**2*K4 - 3092*K2**2 + 144*K2*K3*K5 + 32*K2*K4*K6 - 1488*K3**2 - 406*K4**2 - 44*K5**2 - 4*K6**2 + 3260
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact