Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,1,2,4,-1,0,2,1,0,1,0,1,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1488'] |
Arrow polynomial of the knot is: 4*K1**3 - 4*K1*K2 - K1 + K3 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.395', '6.430', '6.440', '6.548', '6.551', '6.774', '6.832', '6.887', '6.908', '6.911', '6.1205', '6.1332', '6.1339', '6.1341', '6.1346', '6.1382', '6.1488', '6.1651', '6.1655', '6.1686'] |
Outer characteristic polynomial of the knot is: t^7+31t^5+68t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1488'] |
2-strand cable arrow polynomial of the knot is: -64*K1**3*K3 - 192*K1**2*K2**4 + 704*K1**2*K2**3 - 4048*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 256*K1**2*K2*K4 + 4000*K1**2*K2 - 128*K1**2*K3**2 - 3096*K1**2 + 512*K1*K2**3*K3 - 832*K1*K2**2*K3 - 256*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 4696*K1*K2*K3 + 416*K1*K3*K4 + 32*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1152*K2**4 - 32*K2**3*K6 - 560*K2**2*K3**2 - 16*K2**2*K4**2 + 1184*K2**2*K4 - 2030*K2**2 + 488*K2*K3*K5 + 16*K2*K4*K6 - 1248*K3**2 - 260*K4**2 - 72*K5**2 - 2*K6**2 + 2258 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1488'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4731', 'vk6.5053', 'vk6.6263', 'vk6.6708', 'vk6.8232', 'vk6.8677', 'vk6.9621', 'vk6.9941', 'vk6.20655', 'vk6.22088', 'vk6.28141', 'vk6.29572', 'vk6.39583', 'vk6.41816', 'vk6.46198', 'vk6.47818', 'vk6.48763', 'vk6.48967', 'vk6.49567', 'vk6.49778', 'vk6.50777', 'vk6.50986', 'vk6.51261', 'vk6.51463', 'vk6.57579', 'vk6.58747', 'vk6.62249', 'vk6.63197', 'vk6.67049', 'vk6.67924', 'vk6.69674', 'vk6.70357'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4U3U2O5O6U5U4U6 |
R3 orbit | {'O1O2O3U1O4U3U2O5O6U5U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5U6O4O6U2U1O5U3 |
Gauss code of K* | O1O2O3U4U5U6O4U2O6O5U1U3 |
Gauss code of -K* | O1O2O3U1U3O4O5U2O6U5U4U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 0 1 -1 2],[ 2 0 2 1 2 0 0],[ 0 -2 0 0 2 0 1],[ 0 -1 0 0 1 0 1],[-1 -2 -2 -1 0 0 2],[ 1 0 0 0 0 0 1],[-2 0 -1 -1 -2 -1 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 -2 -1 -1 -1 0],[-1 2 0 -1 -2 0 -2],[ 0 1 1 0 0 0 -1],[ 0 1 2 0 0 0 -2],[ 1 1 0 0 0 0 0],[ 2 0 2 1 2 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,2,1,1,1,0,1,2,0,2,0,0,1,0,2,0] |
Phi over symmetry | [-2,-1,0,0,1,2,-1,1,1,2,4,-1,0,2,1,0,1,0,1,1,1] |
Phi of -K | [-2,-1,0,0,1,2,1,0,1,1,4,1,1,2,2,0,-1,1,0,1,-1] |
Phi of K* | [-2,-1,0,0,1,2,-1,1,1,2,4,-1,0,2,1,0,1,0,1,1,1] |
Phi of -K* | [-2,-1,0,0,1,2,0,1,2,2,0,0,0,0,1,0,1,1,2,1,2] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial | 7w^3z^2+24w^2z+21w |
Inner characteristic polynomial | t^6+21t^4+20t^2 |
Outer characteristic polynomial | t^7+31t^5+68t^3+4t |
Flat arrow polynomial | 4*K1**3 - 4*K1*K2 - K1 + K3 + 1 |
2-strand cable arrow polynomial | -64*K1**3*K3 - 192*K1**2*K2**4 + 704*K1**2*K2**3 - 4048*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 256*K1**2*K2*K4 + 4000*K1**2*K2 - 128*K1**2*K3**2 - 3096*K1**2 + 512*K1*K2**3*K3 - 832*K1*K2**2*K3 - 256*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 4696*K1*K2*K3 + 416*K1*K3*K4 + 32*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1152*K2**4 - 32*K2**3*K6 - 560*K2**2*K3**2 - 16*K2**2*K4**2 + 1184*K2**2*K4 - 2030*K2**2 + 488*K2*K3*K5 + 16*K2*K4*K6 - 1248*K3**2 - 260*K4**2 - 72*K5**2 - 2*K6**2 + 2258 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}]] |
If K is slice | False |