Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1490

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,2,2,2,2,0,1,1,1,0,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1490']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+24t^5+47t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1490']
2-strand cable arrow polynomial of the knot is: 32*K1**4*K2 - 640*K1**4 + 32*K1**3*K2*K3 - 368*K1**2*K2**2 - 96*K1**2*K2*K4 + 1752*K1**2*K2 - 64*K1**2*K3**2 - 1412*K1**2 - 32*K1*K2**2*K3 + 1032*K1*K2*K3 + 232*K1*K3*K4 - 8*K2**4 + 104*K2**2*K4 - 1096*K2**2 - 468*K3**2 - 122*K4**2 + 1120
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1490']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3625', 'vk6.3708', 'vk6.3901', 'vk6.4010', 'vk6.7047', 'vk6.7096', 'vk6.7273', 'vk6.7380', 'vk6.11403', 'vk6.12588', 'vk6.12701', 'vk6.19110', 'vk6.19157', 'vk6.19799', 'vk6.25719', 'vk6.25780', 'vk6.26236', 'vk6.26681', 'vk6.31009', 'vk6.31138', 'vk6.31189', 'vk6.31530', 'vk6.32193', 'vk6.32357', 'vk6.32774', 'vk6.37838', 'vk6.37895', 'vk6.39040', 'vk6.41302', 'vk6.44965', 'vk6.45796', 'vk6.48261', 'vk6.48442', 'vk6.52470', 'vk6.53360', 'vk6.58404', 'vk6.62928', 'vk6.63734', 'vk6.66211', 'vk6.66240']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U3U4O5O6U2U6U5
R3 orbit {'O1O2O3U1O4U3U4O5O6U2U6U5', 'O1O2O3U4U2O5U3O6U1U6O4U5'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U5U2O5O4U6U1O6U3
Gauss code of K* O1O2O3U4U1U5O4U6O5O6U3U2
Gauss code of -K* O1O2O3U2U1O4O5U4O6U5U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 1 1 1],[ 2 0 2 1 1 1 1],[ 1 -2 0 -1 1 2 1],[ 0 -1 1 0 1 0 0],[-1 -1 -1 -1 0 0 0],[-1 -1 -2 0 0 0 0],[-1 -1 -1 0 0 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 0 0 0 -1 -1],[-1 0 0 0 0 -2 -1],[-1 0 0 0 -1 -1 -1],[ 0 0 0 1 0 1 -1],[ 1 1 2 1 -1 0 -2],[ 2 1 1 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,0,0,0,1,1,0,0,2,1,1,1,1,-1,1,2]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,2,2,2,2,0,1,1,1,0,1,0,0,0]
Phi of -K [-2,-1,0,1,1,1,-1,1,2,2,2,2,0,1,1,1,0,1,0,0,0]
Phi of K* [-1,-1,-1,0,1,2,0,0,0,1,2,0,1,0,2,1,1,2,2,1,-1]
Phi of -K* [-2,-1,0,1,1,1,2,1,1,1,1,-1,1,1,2,0,1,0,0,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 2z^2+15z+23
Enhanced Jones-Krushkal polynomial 2w^3z^2+15w^2z+23w
Inner characteristic polynomial t^6+16t^4+22t^2+1
Outer characteristic polynomial t^7+24t^5+47t^3+4t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial 32*K1**4*K2 - 640*K1**4 + 32*K1**3*K2*K3 - 368*K1**2*K2**2 - 96*K1**2*K2*K4 + 1752*K1**2*K2 - 64*K1**2*K3**2 - 1412*K1**2 - 32*K1*K2**2*K3 + 1032*K1*K2*K3 + 232*K1*K3*K4 - 8*K2**4 + 104*K2**2*K4 - 1096*K2**2 - 468*K3**2 - 122*K4**2 + 1120
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact