Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1491

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,2,1,1,1,1,0,1,-1,0,1,0,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.1491']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+25t^5+58t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1491']
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 1376*K1**4*K2 - 4336*K1**4 + 480*K1**3*K2*K3 - 1184*K1**3*K3 + 128*K1**2*K2**3 - 4016*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 10176*K1**2*K2 - 1552*K1**2*K3**2 - 64*K1**2*K3*K5 - 6772*K1**2 - 864*K1*K2**2*K3 - 320*K1*K2*K3*K4 + 7800*K1*K2*K3 + 2080*K1*K3*K4 + 272*K1*K4*K5 - 128*K2**4 - 224*K2**2*K3**2 - 16*K2**2*K4**2 + 744*K2**2*K4 - 5636*K2**2 + 536*K2*K3*K5 + 32*K2*K4*K6 - 32*K3**4 + 80*K3**2*K6 - 3020*K3**2 - 836*K4**2 - 256*K5**2 - 44*K6**2 + 5882
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1491']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3559', 'vk6.3580', 'vk6.3584', 'vk6.3805', 'vk6.3809', 'vk6.3838', 'vk6.3842', 'vk6.6967', 'vk6.6979', 'vk6.7000', 'vk6.7012', 'vk6.7189', 'vk6.7201', 'vk6.7222', 'vk6.15344', 'vk6.15347', 'vk6.15471', 'vk6.15472', 'vk6.33983', 'vk6.34032', 'vk6.34035', 'vk6.34441', 'vk6.48208', 'vk6.48220', 'vk6.48370', 'vk6.49949', 'vk6.49970', 'vk6.49974', 'vk6.54008', 'vk6.54009', 'vk6.54056', 'vk6.54503']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U3U4O5O6U5U2U6
R3 orbit {'O1O2O3U1O4U3U4O5O6U5U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2U5O4O5U6U1O6U3
Gauss code of K* O1O2O3U4U2U5O4U6O5O6U1U3
Gauss code of -K* O1O2O3U1U3O4O5U4O6U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 1 -1 2],[ 2 0 2 1 1 0 1],[ 0 -2 0 -1 1 0 2],[ 0 -1 1 0 1 0 0],[-1 -1 -1 -1 0 0 0],[ 1 0 0 0 0 0 1],[-2 -1 -2 0 0 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 0 -2 -1 -1],[-1 0 0 -1 -1 0 -1],[ 0 0 1 0 1 0 -1],[ 0 2 1 -1 0 0 -2],[ 1 1 0 0 0 0 0],[ 2 1 1 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,0,2,1,1,1,1,0,1,-1,0,1,0,2,0]
Phi over symmetry [-2,-1,0,0,1,2,0,0,2,1,1,1,1,0,1,-1,0,1,0,2,0]
Phi of -K [-2,-1,0,0,1,2,1,0,1,2,3,1,1,2,2,1,0,0,0,2,1]
Phi of K* [-2,-1,0,0,1,2,1,0,2,2,3,0,0,2,2,-1,1,0,1,1,1]
Phi of -K* [-2,-1,0,0,1,2,0,1,2,1,1,0,0,0,1,1,1,0,1,2,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 21z+43
Enhanced Jones-Krushkal polynomial 21w^2z+43w
Inner characteristic polynomial t^6+15t^4+24t^2
Outer characteristic polynomial t^7+25t^5+58t^3+4t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -128*K1**4*K2**2 + 1376*K1**4*K2 - 4336*K1**4 + 480*K1**3*K2*K3 - 1184*K1**3*K3 + 128*K1**2*K2**3 - 4016*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 10176*K1**2*K2 - 1552*K1**2*K3**2 - 64*K1**2*K3*K5 - 6772*K1**2 - 864*K1*K2**2*K3 - 320*K1*K2*K3*K4 + 7800*K1*K2*K3 + 2080*K1*K3*K4 + 272*K1*K4*K5 - 128*K2**4 - 224*K2**2*K3**2 - 16*K2**2*K4**2 + 744*K2**2*K4 - 5636*K2**2 + 536*K2*K3*K5 + 32*K2*K4*K6 - 32*K3**4 + 80*K3**2*K6 - 3020*K3**2 - 836*K4**2 - 256*K5**2 - 44*K6**2 + 5882
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}]]
If K is slice False
Contact