Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1497

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,1,3,1,1,1,2,1,0,0,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1497']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+31t^5+49t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1497']
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 256*K1**4*K2 - 880*K1**4 + 352*K1**3*K2*K3 - 224*K1**3*K3 + 1088*K1**2*K2**3 - 3472*K1**2*K2**2 - 1024*K1**2*K2*K4 + 5040*K1**2*K2 - 304*K1**2*K3**2 - 4132*K1**2 + 96*K1*K2**3*K3 - 672*K1*K2**2*K3 + 4264*K1*K2*K3 + 1264*K1*K3*K4 + 8*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 + 256*K2**4*K4 - 1056*K2**4 - 288*K2**2*K3**2 - 528*K2**2*K4**2 + 1640*K2**2*K4 - 2998*K2**2 + 344*K2*K3*K5 + 304*K2*K4*K6 + 24*K3**2*K6 - 1500*K3**2 - 880*K4**2 - 120*K5**2 - 66*K6**2 + 3358
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1497']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11290', 'vk6.11368', 'vk6.12555', 'vk6.12666', 'vk6.18351', 'vk6.18689', 'vk6.24796', 'vk6.25253', 'vk6.30968', 'vk6.31093', 'vk6.32150', 'vk6.32269', 'vk6.36982', 'vk6.37435', 'vk6.44167', 'vk6.44487', 'vk6.52062', 'vk6.52141', 'vk6.52901', 'vk6.52962', 'vk6.56125', 'vk6.56349', 'vk6.60645', 'vk6.60986', 'vk6.63671', 'vk6.63716', 'vk6.64103', 'vk6.64148', 'vk6.65781', 'vk6.66040', 'vk6.68785', 'vk6.68994']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5U3O5O6U4U2U6
R3 orbit {'O1O2O3U1O4U5U3O5O6U4U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2U5O4O6U1U6O5U3
Gauss code of K* O1O2O3U4U2U5O4U1O6O5U6U3
Gauss code of -K* O1O2O3U1U4O5O4U3O6U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 0 -1 2],[ 2 0 2 1 1 1 1],[ 0 -2 0 0 1 -1 2],[-1 -1 0 0 0 -1 1],[ 0 -1 -1 0 0 0 1],[ 1 -1 1 1 0 0 2],[-2 -1 -2 -1 -1 -2 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 -2 -1],[-1 1 0 0 0 -1 -1],[ 0 1 0 0 -1 0 -1],[ 0 2 0 1 0 -1 -2],[ 1 2 1 0 1 0 -1],[ 2 1 1 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,2,2,1,0,0,1,1,1,0,1,1,2,1]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,1,3,1,1,1,2,1,0,0,1,1,0]
Phi of -K [-2,-1,0,0,1,2,0,0,1,2,3,0,1,1,1,-1,1,0,1,1,0]
Phi of K* [-2,-1,0,0,1,2,0,0,1,1,3,1,1,1,2,1,0,0,1,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,2,1,1,0,1,1,2,-1,0,1,0,2,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+23z+31
Enhanced Jones-Krushkal polynomial 4w^3z^2-2w^3z+25w^2z+31w
Inner characteristic polynomial t^6+21t^4+23t^2
Outer characteristic polynomial t^7+31t^5+49t^3+9t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -128*K1**4*K2**2 + 256*K1**4*K2 - 880*K1**4 + 352*K1**3*K2*K3 - 224*K1**3*K3 + 1088*K1**2*K2**3 - 3472*K1**2*K2**2 - 1024*K1**2*K2*K4 + 5040*K1**2*K2 - 304*K1**2*K3**2 - 4132*K1**2 + 96*K1*K2**3*K3 - 672*K1*K2**2*K3 + 4264*K1*K2*K3 + 1264*K1*K3*K4 + 8*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 + 256*K2**4*K4 - 1056*K2**4 - 288*K2**2*K3**2 - 528*K2**2*K4**2 + 1640*K2**2*K4 - 2998*K2**2 + 344*K2*K3*K5 + 304*K2*K4*K6 + 24*K3**2*K6 - 1500*K3**2 - 880*K4**2 - 120*K5**2 - 66*K6**2 + 3358
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice False
Contact