Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1504

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,0,1,1,3,-1,-1,0,0,0,0,0,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1504']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+27t^5+28t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1504']
2-strand cable arrow polynomial of the knot is: 32*K1**4*K2 - 128*K1**4 - 1184*K1**2*K2**2 + 1992*K1**2*K2 - 1520*K1**2 + 1032*K1*K2*K3 - 120*K2**4 + 72*K2**2*K4 - 856*K2**2 - 224*K3**2 - 6*K4**2 + 908
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1504']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4233', 'vk6.4314', 'vk6.5502', 'vk6.5620', 'vk6.7605', 'vk6.7696', 'vk6.9098', 'vk6.9179', 'vk6.18370', 'vk6.18710', 'vk6.24819', 'vk6.25278', 'vk6.37003', 'vk6.37453', 'vk6.44180', 'vk6.44501', 'vk6.48553', 'vk6.48610', 'vk6.49258', 'vk6.49378', 'vk6.50346', 'vk6.50403', 'vk6.51079', 'vk6.51112', 'vk6.56151', 'vk6.56380', 'vk6.60676', 'vk6.61027', 'vk6.65815', 'vk6.66069', 'vk6.68808', 'vk6.69018', 'vk6.83733', 'vk6.83859', 'vk6.85069', 'vk6.85337', 'vk6.86661', 'vk6.86989', 'vk6.87431', 'vk6.89547']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5U4O6O5U3U2U6
R3 orbit {'O1O2O3U1O4U5U4O6O5U3U2U6', 'O1O2O3U4U5O6U3O5U2U1O4U6'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U2U1O5O4U6U5O6U3
Gauss code of K* O1O2O3U4U2U1O4U5O6O5U3U6
Gauss code of -K* O1O2O3U4U1O5O4U5O6U3U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 1 0 1],[ 2 0 2 1 0 2 2],[ 0 -2 0 0 1 -1 1],[ 0 -1 0 0 1 -1 0],[-1 0 -1 -1 0 -1 -1],[ 0 -2 1 1 1 0 1],[-1 -2 -1 0 1 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 -1 -1 -1 0],[ 0 0 1 0 0 -1 -1],[ 0 1 1 0 0 -1 -2],[ 0 1 1 1 1 0 -2],[ 2 2 0 1 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,-1,0,1,1,2,1,1,1,0,0,1,1,1,2,2]
Phi over symmetry [-2,0,0,0,1,1,0,0,1,1,3,-1,-1,0,0,0,0,0,1,0,-1]
Phi of -K [-2,0,0,0,1,1,0,0,1,1,3,-1,-1,0,0,0,0,0,1,0,-1]
Phi of K* [-1,-1,0,0,0,2,-1,0,0,0,3,0,0,1,1,-1,0,0,1,0,1]
Phi of -K* [-2,0,0,0,1,1,1,2,2,0,2,-1,0,1,0,1,1,1,1,1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial 5w^3z^2+18w^2z+17w
Inner characteristic polynomial t^6+21t^4+13t^2+1
Outer characteristic polynomial t^7+27t^5+28t^3+4t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial 32*K1**4*K2 - 128*K1**4 - 1184*K1**2*K2**2 + 1992*K1**2*K2 - 1520*K1**2 + 1032*K1*K2*K3 - 120*K2**4 + 72*K2**2*K4 - 856*K2**2 - 224*K3**2 - 6*K4**2 + 908
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact