| Gauss code |
O1O2O3U1O4U5U4O6O5U3U6U2 |
| R3 orbit |
{'O1O2O3U1O4U5U4O6O5U3U6U2'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U2U4U1O5O4U6U5O6U3 |
| Gauss code of K* |
O1O2O3U4U3U1O4U5O6O5U2U6 |
| Gauss code of -K* |
O1O2O3U4U2O5O4U5O6U3U1U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 1 0 1 0 0],[ 2 0 2 1 0 2 1],[-1 -2 0 -1 1 -1 0],[ 0 -1 1 0 1 -1 0],[-1 0 -1 -1 0 -1 -1],[ 0 -2 1 1 1 0 0],[ 0 -1 0 0 1 0 0]] |
| Primitive based matrix |
[[ 0 1 1 0 0 0 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 -1 -1 -1 0],[ 0 0 1 0 0 0 -1],[ 0 1 1 0 0 1 -2],[ 0 1 1 0 -1 0 -1],[ 2 2 0 1 2 1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-1,-1,0,0,0,2,-1,0,1,1,2,1,1,1,0,0,0,1,-1,2,1] |
| Phi over symmetry |
[-2,0,0,0,1,1,0,1,1,1,3,-1,0,0,0,0,0,0,1,0,-1] |
| Phi of -K |
[-2,0,0,0,1,1,0,1,1,1,3,-1,0,0,0,0,0,0,1,0,-1] |
| Phi of K* |
[-1,-1,0,0,0,2,-1,0,0,0,3,0,0,1,1,-1,0,1,0,0,1] |
| Phi of -K* |
[-2,0,0,0,1,1,1,1,2,0,2,0,-1,1,1,0,1,0,1,1,-1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^2-2t |
| Normalized Jones-Krushkal polynomial |
21z+43 |
| Enhanced Jones-Krushkal polynomial |
21w^2z+43w |
| Inner characteristic polynomial |
t^6+17t^4+20t^2+4 |
| Outer characteristic polynomial |
t^7+23t^5+31t^3+8t |
| Flat arrow polynomial |
-10*K1**2 + 5*K2 + 6 |
| 2-strand cable arrow polynomial |
-128*K1**6 - 192*K1**4*K2**2 + 2176*K1**4*K2 - 6816*K1**4 + 608*K1**3*K2*K3 - 1856*K1**3*K3 - 5520*K1**2*K2**2 - 736*K1**2*K2*K4 + 13360*K1**2*K2 - 480*K1**2*K3**2 - 6516*K1**2 - 96*K1*K2**2*K3 + 7456*K1*K2*K3 + 872*K1*K3*K4 - 104*K2**4 + 408*K2**2*K4 - 5568*K2**2 - 2132*K3**2 - 350*K4**2 + 5612 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {4, 5}, {3}, {1, 2}]] |
| If K is slice |
False |