Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,1,3,-1,0,0,0,0,0,0,1,0,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1505'] |
Arrow polynomial of the knot is: -10*K1**2 + 5*K2 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.947', '6.1027', '6.1399', '6.1430', '6.1433', '6.1442', '6.1465', '6.1469', '6.1476', '6.1505', '6.1529', '6.1606', '6.1612', '6.1613', '6.1616', '6.1649', '6.1694', '6.1736', '6.1768', '6.1771', '6.1774', '6.1884', '6.1886', '6.1887', '6.1889', '6.1960', '6.1962'] |
Outer characteristic polynomial of the knot is: t^7+23t^5+31t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1505'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 192*K1**4*K2**2 + 2176*K1**4*K2 - 6816*K1**4 + 608*K1**3*K2*K3 - 1856*K1**3*K3 - 5520*K1**2*K2**2 - 736*K1**2*K2*K4 + 13360*K1**2*K2 - 480*K1**2*K3**2 - 6516*K1**2 - 96*K1*K2**2*K3 + 7456*K1*K2*K3 + 872*K1*K3*K4 - 104*K2**4 + 408*K2**2*K4 - 5568*K2**2 - 2132*K3**2 - 350*K4**2 + 5612 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1505'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3661', 'vk6.3758', 'vk6.3947', 'vk6.4044', 'vk6.4500', 'vk6.4595', 'vk6.5886', 'vk6.6013', 'vk6.7146', 'vk6.7319', 'vk6.7412', 'vk6.7931', 'vk6.8050', 'vk6.9365', 'vk6.17906', 'vk6.18003', 'vk6.18751', 'vk6.24441', 'vk6.24876', 'vk6.25337', 'vk6.37490', 'vk6.43868', 'vk6.44223', 'vk6.44526', 'vk6.48301', 'vk6.48366', 'vk6.50084', 'vk6.50194', 'vk6.50576', 'vk6.50639', 'vk6.55867', 'vk6.60715'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4U5U4O6O5U3U6U2 |
R3 orbit | {'O1O2O3U1O4U5U4O6O5U3U6U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U2U4U1O5O4U6U5O6U3 |
Gauss code of K* | O1O2O3U4U3U1O4U5O6O5U2U6 |
Gauss code of -K* | O1O2O3U4U2O5O4U5O6U3U1U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 0 1 0 0],[ 2 0 2 1 0 2 1],[-1 -2 0 -1 1 -1 0],[ 0 -1 1 0 1 -1 0],[-1 0 -1 -1 0 -1 -1],[ 0 -2 1 1 1 0 0],[ 0 -1 0 0 1 0 0]] |
Primitive based matrix | [[ 0 1 1 0 0 0 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 -1 -1 -1 0],[ 0 0 1 0 0 0 -1],[ 0 1 1 0 0 1 -2],[ 0 1 1 0 -1 0 -1],[ 2 2 0 1 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,0,0,0,2,-1,0,1,1,2,1,1,1,0,0,0,1,-1,2,1] |
Phi over symmetry | [-2,0,0,0,1,1,0,1,1,1,3,-1,0,0,0,0,0,0,1,0,-1] |
Phi of -K | [-2,0,0,0,1,1,0,1,1,1,3,-1,0,0,0,0,0,0,1,0,-1] |
Phi of K* | [-1,-1,0,0,0,2,-1,0,0,0,3,0,0,1,1,-1,0,1,0,0,1] |
Phi of -K* | [-2,0,0,0,1,1,1,1,2,0,2,0,-1,1,1,0,1,0,1,1,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 21z+43 |
Enhanced Jones-Krushkal polynomial | 21w^2z+43w |
Inner characteristic polynomial | t^6+17t^4+20t^2+4 |
Outer characteristic polynomial | t^7+23t^5+31t^3+8t |
Flat arrow polynomial | -10*K1**2 + 5*K2 + 6 |
2-strand cable arrow polynomial | -128*K1**6 - 192*K1**4*K2**2 + 2176*K1**4*K2 - 6816*K1**4 + 608*K1**3*K2*K3 - 1856*K1**3*K3 - 5520*K1**2*K2**2 - 736*K1**2*K2*K4 + 13360*K1**2*K2 - 480*K1**2*K3**2 - 6516*K1**2 - 96*K1*K2**2*K3 + 7456*K1*K2*K3 + 872*K1*K3*K4 - 104*K2**4 + 408*K2**2*K4 - 5568*K2**2 - 2132*K3**2 - 350*K4**2 + 5612 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {4, 5}, {3}, {1, 2}]] |
If K is slice | False |