Min(phi) over symmetries of the knot is: [-2,-1,1,1,1,0,0,1,2,1,1,1,-1,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['5.54', '6.1506', '7.22432'] |
Arrow polynomial of the knot is: 4*K1**3 + 2*K1**2 - 4*K1*K2 - K1 - K2 + K3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.140', '6.569', '6.943', '6.970', '6.1234', '6.1298', '6.1311', '6.1326', '6.1500', '6.1506', '6.1708', '6.1712', '6.1720', '6.1859'] |
Outer characteristic polynomial of the knot is: t^6+18t^4+16t^2+1 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['5.54', '6.1506'] |
2-strand cable arrow polynomial of the knot is: 4608*K1**4*K2 - 7264*K1**4 + 1536*K1**3*K2*K3 - 1472*K1**3*K3 - 384*K1**2*K2**4 + 768*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 8112*K1**2*K2**2 - 736*K1**2*K2*K4 + 6648*K1**2*K2 - 1248*K1**2*K3**2 - 96*K1**2*K4**2 + 904*K1**2 + 416*K1*K2**3*K3 - 544*K1*K2**2*K3 - 256*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 4672*K1*K2*K3 + 816*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 584*K2**4 - 32*K2**3*K6 - 112*K2**2*K3**2 - 16*K2**2*K4**2 + 496*K2**2*K4 - 1102*K2**2 + 120*K2*K3*K5 + 16*K2*K4*K6 - 556*K3**2 - 158*K4**2 - 28*K5**2 - 2*K6**2 + 1348 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1506'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3254', 'vk6.3280', 'vk6.3298', 'vk6.3382', 'vk6.3413', 'vk6.3431', 'vk6.3471', 'vk6.3517', 'vk6.4627', 'vk6.5918', 'vk6.6037', 'vk6.7957', 'vk6.8074', 'vk6.9389', 'vk6.17838', 'vk6.17855', 'vk6.19057', 'vk6.19868', 'vk6.24351', 'vk6.25673', 'vk6.25690', 'vk6.26313', 'vk6.26756', 'vk6.37777', 'vk6.43776', 'vk6.43793', 'vk6.45050', 'vk6.48114', 'vk6.48127', 'vk6.48152', 'vk6.48203', 'vk6.50663'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4U5U4O6O5U6U3U2 |
R3 orbit | {'O1O2O3U1O4U5U4O6O5U6U3U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U2U1U4O5O4U6U5O6U3 |
Gauss code of K* | O1O2O3U4U3U2O4U5O6O5U1U6 |
Gauss code of -K* | O1O2O3U4U3O5O4U5O6U2U1U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 1 1 0 -1],[ 2 0 2 1 0 2 0],[-1 -2 0 0 1 -1 -1],[-1 -1 0 0 1 -1 -1],[-1 0 -1 -1 0 -1 -1],[ 0 -2 1 1 1 0 -1],[ 1 0 1 1 1 1 0]] |
Primitive based matrix | [[ 0 1 1 1 -1 -2],[-1 0 1 0 -1 -1],[-1 -1 0 -1 -1 0],[-1 0 1 0 -1 -2],[ 1 1 1 1 0 0],[ 2 1 0 2 0 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-1,-1,-1,1,2,-1,0,1,1,1,1,0,1,2,0] |
Phi over symmetry | [-2,-1,1,1,1,0,0,1,2,1,1,1,-1,-1,0] |
Phi of -K | [-2,-1,1,1,1,1,1,2,3,1,1,1,0,-1,-1] |
Phi of K* | [-1,-1,-1,1,2,-1,-1,1,3,0,1,1,1,2,1] |
Phi of -K* | [-2,-1,1,1,1,0,0,1,2,1,1,1,-1,-1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial | 9w^3z^2+30w^2z+25w |
Inner characteristic polynomial | t^5+10t^3+7t |
Outer characteristic polynomial | t^6+18t^4+16t^2+1 |
Flat arrow polynomial | 4*K1**3 + 2*K1**2 - 4*K1*K2 - K1 - K2 + K3 |
2-strand cable arrow polynomial | 4608*K1**4*K2 - 7264*K1**4 + 1536*K1**3*K2*K3 - 1472*K1**3*K3 - 384*K1**2*K2**4 + 768*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 8112*K1**2*K2**2 - 736*K1**2*K2*K4 + 6648*K1**2*K2 - 1248*K1**2*K3**2 - 96*K1**2*K4**2 + 904*K1**2 + 416*K1*K2**3*K3 - 544*K1*K2**2*K3 - 256*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 4672*K1*K2*K3 + 816*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 584*K2**4 - 32*K2**3*K6 - 112*K2**2*K3**2 - 16*K2**2*K4**2 + 496*K2**2*K4 - 1102*K2**2 + 120*K2*K3*K5 + 16*K2*K4*K6 - 556*K3**2 - 158*K4**2 - 28*K5**2 - 2*K6**2 + 1348 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {5}, {3, 4}, {2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}]] |
If K is slice | False |