Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1507

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,3,3,2,2,1,1,1,0,0,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1507']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^7+31t^5+92t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1507']
2-strand cable arrow polynomial of the knot is: -384*K1**4*K2**2 + 608*K1**4*K2 - 720*K1**4 + 224*K1**3*K2*K3 - 96*K1**3*K3 - 128*K1**2*K2**4 + 1344*K1**2*K2**3 - 5952*K1**2*K2**2 - 352*K1**2*K2*K4 + 5040*K1**2*K2 - 80*K1**2*K3**2 - 3164*K1**2 + 1088*K1*K2**3*K3 - 736*K1*K2**2*K3 - 224*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 5192*K1*K2*K3 + 208*K1*K3*K4 + 8*K1*K4*K5 - 448*K2**6 + 544*K2**4*K4 - 3328*K2**4 - 1232*K2**2*K3**2 - 208*K2**2*K4**2 + 2248*K2**2*K4 - 1104*K2**2 + 696*K2*K3*K5 + 24*K2*K4*K6 - 1152*K3**2 - 332*K4**2 - 92*K5**2 + 2602
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1507']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11451', 'vk6.11748', 'vk6.12766', 'vk6.13108', 'vk6.20675', 'vk6.22114', 'vk6.28180', 'vk6.29604', 'vk6.31205', 'vk6.31544', 'vk6.32373', 'vk6.32786', 'vk6.39631', 'vk6.41872', 'vk6.46235', 'vk6.47842', 'vk6.52213', 'vk6.52486', 'vk6.53048', 'vk6.53368', 'vk6.57605', 'vk6.58766', 'vk6.62265', 'vk6.63208', 'vk6.63780', 'vk6.63893', 'vk6.64210', 'vk6.64394', 'vk6.67067', 'vk6.67933', 'vk6.69683', 'vk6.70365']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U1U3O5O6U4U5U6
R3 orbit {'O1O2O3U2O4U1U3O5O6U4U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U6O4O5U1U3O6U2
Gauss code of K* O1O2O3U4U5U6O5U1O4O6U2U3
Gauss code of -K* O1O2O3U1U2O4O5U3O6U4U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 0 2],[ 2 0 0 2 2 1 1],[ 1 0 0 1 1 0 0],[-1 -2 -1 0 1 1 1],[ 0 -2 -1 -1 0 1 2],[ 0 -1 0 -1 -1 0 1],[-2 -1 0 -1 -2 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 0 -1],[-1 1 0 1 1 -1 -2],[ 0 1 -1 0 -1 0 -1],[ 0 2 -1 1 0 -1 -2],[ 1 0 1 0 1 0 0],[ 2 1 2 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,2,0,1,-1,-1,1,2,1,0,1,1,2,0]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,3,3,2,2,1,1,1,0,0,1,1,1]
Phi of -K [-2,-1,0,0,1,2,1,0,1,1,3,0,1,1,3,-1,2,0,2,1,0]
Phi of K* [-2,-1,0,0,1,2,0,0,1,3,3,2,2,1,1,1,0,0,1,1,1]
Phi of -K* [-2,-1,0,0,1,2,0,1,2,2,1,0,1,1,0,-1,-1,1,-1,2,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+5w^3z^2-8w^3z+24w^2z+21w
Inner characteristic polynomial t^6+21t^4+22t^2+1
Outer characteristic polynomial t^7+31t^5+92t^3+16t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial -384*K1**4*K2**2 + 608*K1**4*K2 - 720*K1**4 + 224*K1**3*K2*K3 - 96*K1**3*K3 - 128*K1**2*K2**4 + 1344*K1**2*K2**3 - 5952*K1**2*K2**2 - 352*K1**2*K2*K4 + 5040*K1**2*K2 - 80*K1**2*K3**2 - 3164*K1**2 + 1088*K1*K2**3*K3 - 736*K1*K2**2*K3 - 224*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 5192*K1*K2*K3 + 208*K1*K3*K4 + 8*K1*K4*K5 - 448*K2**6 + 544*K2**4*K4 - 3328*K2**4 - 1232*K2**2*K3**2 - 208*K2**2*K4**2 + 2248*K2**2*K4 - 1104*K2**2 + 696*K2*K3*K5 + 24*K2*K4*K6 - 1152*K3**2 - 332*K4**2 - 92*K5**2 + 2602
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}]]
If K is slice False
Contact