| Gauss code |
O1O2O3U2O4U1U3O5O6U5U4U6 |
| R3 orbit |
{'O1O2O3U2O4U1U3O5O6U5U4U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U5U6O4O6U1U3O5U2 |
| Gauss code of K* |
O1O2O3U4U5U6O5U2O4O6U1U3 |
| Gauss code of -K* |
O1O2O3U1U3O4O5U2O6U4U6U5 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 -1 1 1 -1 2],[ 2 0 0 2 2 0 1],[ 1 0 0 1 1 0 0],[-1 -2 -1 0 1 0 1],[-1 -2 -1 -1 0 0 2],[ 1 0 0 0 0 0 1],[-2 -1 0 -1 -2 -1 0]] |
| Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -2 0 -1 -1],[-1 1 0 1 -1 0 -2],[-1 2 -1 0 -1 0 -2],[ 1 0 1 1 0 0 0],[ 1 1 0 0 0 0 0],[ 2 1 2 2 0 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,-1,1,1,2,1,2,0,1,1,-1,1,0,2,1,0,2,0,0,0] |
| Phi over symmetry |
[-2,-1,-1,1,1,2,-1,0,2,3,3,-1,2,1,1,2,1,1,0,1,1] |
| Phi of -K |
[-2,-1,-1,1,1,2,1,1,1,1,3,0,1,1,3,2,2,2,-1,0,-1] |
| Phi of K* |
[-2,-1,-1,1,1,2,-1,0,2,3,3,-1,2,1,1,2,1,1,0,1,1] |
| Phi of -K* |
[-2,-1,-1,1,1,2,0,0,2,2,1,0,0,0,1,1,1,0,-1,2,1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
z^2+18z+33 |
| Enhanced Jones-Krushkal polynomial |
w^3z^2+18w^2z+33w |
| Inner characteristic polynomial |
t^6+18t^4+23t^2 |
| Outer characteristic polynomial |
t^7+30t^5+67t^3+4t |
| Flat arrow polynomial |
4*K1**3 - 8*K1**2 - 8*K1*K2 + K1 + 4*K2 + 3*K3 + 5 |
| 2-strand cable arrow polynomial |
-128*K1**6 + 512*K1**4*K2 - 2128*K1**4 + 352*K1**3*K2*K3 + 64*K1**3*K3*K4 - 992*K1**3*K3 + 256*K1**2*K2**3 - 2400*K1**2*K2**2 + 224*K1**2*K2*K3**2 - 160*K1**2*K2*K4 + 6120*K1**2*K2 - 1552*K1**2*K3**2 - 32*K1**2*K3*K5 - 128*K1**2*K4**2 - 4536*K1**2 + 224*K1*K2**3*K3 - 992*K1*K2**2*K3 - 128*K1*K2**2*K5 + 160*K1*K2*K3**3 - 288*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6040*K1*K2*K3 - 32*K1*K3**2*K5 + 1808*K1*K3*K4 + 224*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 448*K2**4 - 32*K2**3*K6 - 576*K2**2*K3**2 - 32*K2**2*K4**2 + 904*K2**2*K4 - 3634*K2**2 - 32*K2*K3**2*K4 + 520*K2*K3*K5 + 48*K2*K4*K6 - 128*K3**4 + 72*K3**2*K6 - 2160*K3**2 - 688*K4**2 - 152*K5**2 - 14*K6**2 + 3862 |
| Genus of based matrix |
0 |
| Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}]] |
| If K is slice |
True |