Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1527

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,1,2,0,1,0,1,0,0,0,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1527', '7.32490']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+36t^5+48t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1527', '7.32490']
2-strand cable arrow polynomial of the knot is: -512*K1**6 - 1024*K1**4*K2**2 + 1792*K1**4*K2 - 1696*K1**4 + 576*K1**3*K2*K3 - 320*K1**3*K3 - 576*K1**2*K2**4 + 1728*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3744*K1**2*K2**2 - 480*K1**2*K2*K4 + 3160*K1**2*K2 - 676*K1**2 + 544*K1*K2**3*K3 - 672*K1*K2**2*K3 - 192*K1*K2**2*K5 + 2144*K1*K2*K3 + 112*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 984*K2**4 - 32*K2**3*K6 - 144*K2**2*K3**2 - 16*K2**2*K4**2 + 688*K2**2*K4 - 510*K2**2 + 88*K2*K3*K5 + 16*K2*K4*K6 - 236*K3**2 - 74*K4**2 - 16*K5**2 - 2*K6**2 + 880
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1527']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.397', 'vk6.427', 'vk6.431', 'vk6.837', 'vk6.840', 'vk6.876', 'vk6.881', 'vk6.1115', 'vk6.1582', 'vk6.1644', 'vk6.1755', 'vk6.2033', 'vk6.2059', 'vk6.2061', 'vk6.2141', 'vk6.2236', 'vk6.2706', 'vk6.2743', 'vk6.2847', 'vk6.3146', 'vk6.12052', 'vk6.13043', 'vk6.13539', 'vk6.13552', 'vk6.13730', 'vk6.13741', 'vk6.19459', 'vk6.19461', 'vk6.19752', 'vk6.19756', 'vk6.25792', 'vk6.25814', 'vk6.26630', 'vk6.28447', 'vk6.37924', 'vk6.39317', 'vk6.40216', 'vk6.41495', 'vk6.44911', 'vk6.46853']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U5U6O5O6U3U1U4
R3 orbit {'O1O2U1O3O4U5U6O5O6U2U3U4', 'O1O2O3U2O4U5U6O5O6U3U1U4'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U3U1O5O6U5U6O4U2
Gauss code of K* O1O2O3U2U4U1O4U3O5O6U5U6
Gauss code of -K* O1O2O3U4U5O4O5U1O6U3U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 0 2 -1 1],[ 1 0 -1 1 2 0 2],[ 1 1 0 1 1 1 1],[ 0 -1 -1 0 1 -1 1],[-2 -2 -1 -1 0 -3 -1],[ 1 0 -1 1 3 0 1],[-1 -2 -1 -1 1 -1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 -1 -2 -3],[-1 1 0 -1 -1 -2 -1],[ 0 1 1 0 -1 -1 -1],[ 1 1 1 1 0 1 1],[ 1 2 2 1 -1 0 0],[ 1 3 1 1 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,1,1,1,2,3,1,1,2,1,1,1,1,-1,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,0,1,2,0,1,0,1,0,0,0,0,-1,-1]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,0,1,2,0,0,0,1,0,1,0,0,1,0]
Phi of K* [-2,-1,0,1,1,1,0,1,0,1,2,0,1,0,1,0,0,0,0,-1,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,1,1,3,1,1,1,1,1,2,2,1,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2+16w^2z+21w
Inner characteristic polynomial t^6+28t^4+35t^2
Outer characteristic polynomial t^7+36t^5+48t^3+3t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -512*K1**6 - 1024*K1**4*K2**2 + 1792*K1**4*K2 - 1696*K1**4 + 576*K1**3*K2*K3 - 320*K1**3*K3 - 576*K1**2*K2**4 + 1728*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3744*K1**2*K2**2 - 480*K1**2*K2*K4 + 3160*K1**2*K2 - 676*K1**2 + 544*K1*K2**3*K3 - 672*K1*K2**2*K3 - 192*K1*K2**2*K5 + 2144*K1*K2*K3 + 112*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 984*K2**4 - 32*K2**3*K6 - 144*K2**2*K3**2 - 16*K2**2*K4**2 + 688*K2**2*K4 - 510*K2**2 + 88*K2*K3*K5 + 16*K2*K4*K6 - 236*K3**2 - 74*K4**2 - 16*K5**2 - 2*K6**2 + 880
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {5}, {2, 3}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {2, 3}, {1}], [{6}, {4, 5}, {2, 3}, {1}]]
If K is slice False
Contact