Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1529

Min(phi) over symmetries of the knot is: [-2,0,0,1,1,1,1,1,1,0,0,1,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['5.85', '6.1529', '7.14921', '7.31459', '7.38203', '7.42966', '7.44678']
Arrow polynomial of the knot is: -10*K1**2 + 5*K2 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.947', '6.1027', '6.1399', '6.1430', '6.1433', '6.1442', '6.1465', '6.1469', '6.1476', '6.1505', '6.1529', '6.1606', '6.1612', '6.1613', '6.1616', '6.1649', '6.1694', '6.1736', '6.1768', '6.1771', '6.1774', '6.1884', '6.1886', '6.1887', '6.1889', '6.1960', '6.1962']
Outer characteristic polynomial of the knot is: t^6+13t^4+8t^2+1
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1529', '7.44678']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 2432*K1**4*K2 - 6368*K1**4 + 224*K1**3*K2*K3 - 1024*K1**3*K3 + 128*K1**2*K2**3 - 4880*K1**2*K2**2 - 96*K1**2*K2*K4 + 10592*K1**2*K2 - 96*K1**2*K3**2 - 3804*K1**2 - 64*K1*K2**2*K3 + 3792*K1*K2*K3 + 72*K1*K3*K4 - 104*K2**4 + 104*K2**2*K4 - 3584*K2**2 - 716*K3**2 - 30*K4**2 + 3612
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1529']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17110', 'vk6.17352', 'vk6.20573', 'vk6.21982', 'vk6.23505', 'vk6.23842', 'vk6.28035', 'vk6.29494', 'vk6.35654', 'vk6.36090', 'vk6.39441', 'vk6.41642', 'vk6.43017', 'vk6.43328', 'vk6.46025', 'vk6.47693', 'vk6.55249', 'vk6.55500', 'vk6.57455', 'vk6.58622', 'vk6.59655', 'vk6.60001', 'vk6.62126', 'vk6.63092', 'vk6.65055', 'vk6.65249', 'vk6.66983', 'vk6.67848', 'vk6.68319', 'vk6.68468', 'vk6.69598', 'vk6.70291']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4U5U1O6O5U3U6U4
R3 orbit {'O1O2O3U2O4U5U1O6O5U3U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U1O6O5U3U6O4U2
Gauss code of K* O1O2O3U4U5U1O5U3O6O4U2U6
Gauss code of -K* O1O2O3U4U2O5O4U1O6U3U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 0 2 0 0],[ 1 0 0 1 1 1 0],[ 1 0 0 1 1 1 1],[ 0 -1 -1 0 2 0 0],[-2 -1 -1 -2 0 -1 -1],[ 0 -1 -1 0 1 0 0],[ 0 0 -1 0 1 0 0]]
Primitive based matrix [[ 0 2 0 0 -1 -1],[-2 0 -1 -1 -1 -1],[ 0 1 0 0 0 -1],[ 0 1 0 0 -1 -1],[ 1 1 0 1 0 0],[ 1 1 1 1 0 0]]
If based matrix primitive False
Phi of primitive based matrix [-2,0,0,1,1,1,1,1,1,0,0,1,1,1,0]
Phi over symmetry [-2,0,0,1,1,1,1,1,1,0,0,1,1,1,0]
Phi of -K [-1,-1,0,0,2,0,0,0,2,0,1,2,0,1,1]
Phi of K* [-2,0,0,1,1,1,1,2,2,0,0,0,0,1,0]
Phi of -K* [-1,-1,0,0,2,0,0,1,1,1,1,1,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^5+7t^3+3t
Outer characteristic polynomial t^6+13t^4+8t^2+1
Flat arrow polynomial -10*K1**2 + 5*K2 + 6
2-strand cable arrow polynomial -192*K1**4*K2**2 + 2432*K1**4*K2 - 6368*K1**4 + 224*K1**3*K2*K3 - 1024*K1**3*K3 + 128*K1**2*K2**3 - 4880*K1**2*K2**2 - 96*K1**2*K2*K4 + 10592*K1**2*K2 - 96*K1**2*K3**2 - 3804*K1**2 - 64*K1*K2**2*K3 + 3792*K1*K2*K3 + 72*K1*K3*K4 - 104*K2**4 + 104*K2**2*K4 - 3584*K2**2 - 716*K3**2 - 30*K4**2 + 3612
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {4, 5}, {3}, {1, 2}]]
If K is slice False
Contact