Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,2,1,3,1,1,0,1,0,0,0,1,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1535'] |
Arrow polynomial of the knot is: -16*K1**2 - 4*K1*K2 + 2*K1 + 8*K2 + 2*K3 + 9 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.610', '6.1535'] |
Outer characteristic polynomial of the knot is: t^7+31t^5+36t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1535', '6.1830'] |
2-strand cable arrow polynomial of the knot is: -384*K1**4*K2**2 + 2112*K1**4*K2 - 5824*K1**4 + 1024*K1**3*K2*K3 + 64*K1**3*K3*K4 - 864*K1**3*K3 + 128*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6240*K1**2*K2**2 - 704*K1**2*K2*K4 + 11784*K1**2*K2 - 832*K1**2*K3**2 - 128*K1**2*K4**2 - 6372*K1**2 - 1056*K1*K2**2*K3 - 160*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 8416*K1*K2*K3 + 1704*K1*K3*K4 + 168*K1*K4*K5 - 320*K2**4 - 144*K2**2*K3**2 - 48*K2**2*K4**2 + 1456*K2**2*K4 - 6348*K2**2 + 344*K2*K3*K5 + 32*K2*K4*K6 - 2848*K3**2 - 952*K4**2 - 124*K5**2 - 4*K6**2 + 6182 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1535'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3572', 'vk6.3598', 'vk6.3602', 'vk6.3819', 'vk6.3823', 'vk6.3852', 'vk6.3856', 'vk6.6985', 'vk6.6997', 'vk6.7018', 'vk6.7030', 'vk6.7203', 'vk6.7215', 'vk6.7233', 'vk6.15332', 'vk6.15335', 'vk6.15459', 'vk6.15460', 'vk6.33969', 'vk6.34012', 'vk6.34015', 'vk6.34427', 'vk6.48226', 'vk6.48238', 'vk6.48381', 'vk6.49962', 'vk6.49988', 'vk6.49992', 'vk6.53996', 'vk6.53997', 'vk6.54050', 'vk6.54497'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4U5U4O6O5U1U6U3 |
R3 orbit | {'O1O2O3U2O4U5U4O6O5U1U6U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U1U4U3O5O4U6U5O6U2 |
Gauss code of K* | O1O2O3U1U4U3O4U5O6O5U2U6 |
Gauss code of -K* | O1O2O3U4U2O5O4U5O6U1U6U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 2 1 0 0],[ 2 0 0 3 1 1 0],[ 1 0 0 1 0 1 0],[-2 -3 -1 0 1 -2 -1],[-1 -1 0 -1 0 -1 -1],[ 0 -1 -1 2 1 0 0],[ 0 0 0 1 1 0 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 1 -1 -2 -1 -3],[-1 -1 0 -1 -1 0 -1],[ 0 1 1 0 0 0 0],[ 0 2 1 0 0 -1 -1],[ 1 1 0 0 1 0 0],[ 2 3 1 0 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,-1,1,2,1,3,1,1,0,1,0,0,0,1,1,0] |
Phi over symmetry | [-2,-1,0,0,1,2,-1,1,2,1,3,1,1,0,1,0,0,0,1,1,0] |
Phi of -K | [-2,-1,0,0,1,2,1,1,2,2,1,0,1,2,2,0,0,0,0,1,2] |
Phi of K* | [-2,-1,0,0,1,2,2,0,1,2,1,0,0,2,2,0,0,1,1,2,1] |
Phi of -K* | [-2,-1,0,0,1,2,0,0,1,1,3,0,1,0,1,0,1,1,1,2,-1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 21z+43 |
Enhanced Jones-Krushkal polynomial | 21w^2z+43w |
Inner characteristic polynomial | t^6+21t^4+16t^2+1 |
Outer characteristic polynomial | t^7+31t^5+36t^3+4t |
Flat arrow polynomial | -16*K1**2 - 4*K1*K2 + 2*K1 + 8*K2 + 2*K3 + 9 |
2-strand cable arrow polynomial | -384*K1**4*K2**2 + 2112*K1**4*K2 - 5824*K1**4 + 1024*K1**3*K2*K3 + 64*K1**3*K3*K4 - 864*K1**3*K3 + 128*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6240*K1**2*K2**2 - 704*K1**2*K2*K4 + 11784*K1**2*K2 - 832*K1**2*K3**2 - 128*K1**2*K4**2 - 6372*K1**2 - 1056*K1*K2**2*K3 - 160*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 8416*K1*K2*K3 + 1704*K1*K3*K4 + 168*K1*K4*K5 - 320*K2**4 - 144*K2**2*K3**2 - 48*K2**2*K4**2 + 1456*K2**2*K4 - 6348*K2**2 + 344*K2*K3*K5 + 32*K2*K4*K6 - 2848*K3**2 - 952*K4**2 - 124*K5**2 - 4*K6**2 + 6182 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{5, 6}, {2, 4}, {1, 3}]] |
If K is slice | False |