Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1539

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,1,2,2,0,0,2,1,0,1,1,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1539']
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.315', '6.337', '6.389', '6.418', '6.599', '6.675', '6.686', '6.688', '6.746', '6.747', '6.809', '6.1034', '6.1128', '6.1133', '6.1334', '6.1363', '6.1489', '6.1539', '6.1564', '6.1821', '6.1863']
Outer characteristic polynomial of the knot is: t^7+33t^5+53t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1539']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 384*K1**4*K2 - 1408*K1**4 + 128*K1**3*K2*K3 - 352*K1**3*K3 - 384*K1**2*K2**4 + 2656*K1**2*K2**3 - 6912*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 480*K1**2*K2*K4 + 7824*K1**2*K2 - 224*K1**2*K3**2 - 5252*K1**2 - 384*K1*K2**4*K3 + 1312*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1408*K1*K2**2*K3 - 96*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 6432*K1*K2*K3 + 688*K1*K3*K4 + 16*K1*K4*K5 - 288*K2**6 + 448*K2**4*K4 - 2480*K2**4 - 32*K2**3*K6 - 880*K2**2*K3**2 - 112*K2**2*K4**2 + 1720*K2**2*K4 - 2734*K2**2 + 416*K2*K3*K5 + 24*K2*K4*K6 - 1696*K3**2 - 404*K4**2 - 28*K5**2 - 2*K6**2 + 3858
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1539']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73709', 'vk6.73826', 'vk6.74190', 'vk6.74800', 'vk6.75638', 'vk6.75822', 'vk6.76351', 'vk6.76869', 'vk6.78621', 'vk6.78814', 'vk6.79219', 'vk6.79688', 'vk6.80255', 'vk6.80391', 'vk6.80692', 'vk6.81064', 'vk6.81614', 'vk6.81792', 'vk6.81924', 'vk6.82173', 'vk6.82300', 'vk6.82648', 'vk6.83202', 'vk6.84062', 'vk6.84222', 'vk6.84688', 'vk6.85008', 'vk6.86012', 'vk6.87758', 'vk6.88218', 'vk6.89395', 'vk6.89610']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U1U2O4O6U5U3U6
R3 orbit {'O1O2O3U4O5U1U2O4O6U5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U5O4O6U2U3O5U6
Gauss code of K* O1O2O3U4U5U2O6U1O4O5U6U3
Gauss code of -K* O1O2O3U1U4O5O6U3O4U2U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 -1 0 2],[ 2 0 1 2 1 1 2],[ 0 -1 0 1 0 0 2],[-1 -2 -1 0 0 -1 2],[ 1 -1 0 0 0 0 1],[ 0 -1 0 1 0 0 1],[-2 -2 -2 -2 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -2 -1 -2 -1 -2],[-1 2 0 -1 -1 0 -2],[ 0 1 1 0 0 0 -1],[ 0 2 1 0 0 0 -1],[ 1 1 0 0 0 0 -1],[ 2 2 2 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,2,1,2,1,2,1,1,0,2,0,0,1,0,1,1]
Phi over symmetry [-2,-1,0,0,1,2,-1,0,1,2,2,0,0,2,1,0,1,1,1,1,0]
Phi of -K [-2,-1,0,0,1,2,0,1,1,1,2,1,1,2,2,0,0,0,0,1,-1]
Phi of K* [-2,-1,0,0,1,2,-1,0,1,2,2,0,0,2,1,0,1,1,1,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,1,2,2,0,0,0,1,0,1,1,1,2,2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial -2w^4z^2+6w^3z^2-2w^3z+23w^2z+27w
Inner characteristic polynomial t^6+23t^4+11t^2+1
Outer characteristic polynomial t^7+33t^5+53t^3+9t
Flat arrow polynomial 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -192*K1**4*K2**2 + 384*K1**4*K2 - 1408*K1**4 + 128*K1**3*K2*K3 - 352*K1**3*K3 - 384*K1**2*K2**4 + 2656*K1**2*K2**3 - 6912*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 480*K1**2*K2*K4 + 7824*K1**2*K2 - 224*K1**2*K3**2 - 5252*K1**2 - 384*K1*K2**4*K3 + 1312*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1408*K1*K2**2*K3 - 96*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 6432*K1*K2*K3 + 688*K1*K3*K4 + 16*K1*K4*K5 - 288*K2**6 + 448*K2**4*K4 - 2480*K2**4 - 32*K2**3*K6 - 880*K2**2*K3**2 - 112*K2**2*K4**2 + 1720*K2**2*K4 - 2734*K2**2 + 416*K2*K3*K5 + 24*K2*K4*K6 - 1696*K3**2 - 404*K4**2 - 28*K5**2 - 2*K6**2 + 3858
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}]]
If K is slice False
Contact