| Gauss code |
O1O2O3U4O5U1U6O4O6U2U5U3 |
| R3 orbit |
{'O1O2O3U4O5U1U6O4O6U2U5U3'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U1U4U2O5O6U5U3O4U6 |
| Gauss code of K* |
O1O2O3U4U1U3O5U2O4O6U5U6 |
| Gauss code of -K* |
O1O2O3U4U5O4O6U2O5U1U3U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 -1 2 -1 1 1],[ 2 0 0 2 2 1 3],[ 1 0 0 2 0 0 2],[-2 -2 -2 0 -2 -1 -1],[ 1 -2 0 2 0 2 1],[-1 -1 0 1 -2 0 -1],[-1 -3 -2 1 -1 1 0]] |
| Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -2 -2 -2],[-1 1 0 1 -1 -2 -3],[-1 1 -1 0 -2 0 -1],[ 1 2 1 2 0 0 -2],[ 1 2 2 0 0 0 0],[ 2 2 3 1 2 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,-1,1,1,2,1,1,2,2,2,-1,1,2,3,2,0,1,0,2,0] |
| Phi over symmetry |
[-2,-1,-1,1,1,2,-1,1,0,2,2,0,1,0,1,0,2,1,-1,0,0] |
| Phi of -K |
[-2,-1,-1,1,1,2,-1,1,0,2,2,0,1,0,1,0,2,1,-1,0,0] |
| Phi of K* |
[-2,-1,-1,1,1,2,0,0,1,1,2,-1,0,2,2,1,0,0,0,-1,1] |
| Phi of -K* |
[-2,-1,-1,1,1,2,0,2,1,3,2,0,0,2,2,2,1,2,-1,1,1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
| Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
| Inner characteristic polynomial |
t^6+38t^4+142t^2+4 |
| Outer characteristic polynomial |
t^7+50t^5+200t^3+14t |
| Flat arrow polynomial |
4*K1**3 - 8*K1**2 - 8*K1*K2 + K1 + 4*K2 + 3*K3 + 5 |
| 2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 96*K1**4*K2 - 1072*K1**4 + 128*K1**3*K2**3*K3 + 1408*K1**3*K2*K3 - 704*K1**3*K3 - 320*K1**2*K2**4 + 224*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 - 7168*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 832*K1**2*K2*K4 + 9592*K1**2*K2 - 1200*K1**2*K3**2 - 7520*K1**2 + 1568*K1*K2**3*K3 - 1600*K1*K2**2*K3 - 640*K1*K2**2*K5 + 224*K1*K2*K3**3 - 384*K1*K2*K3*K4 + 10656*K1*K2*K3 + 1472*K1*K3*K4 + 112*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1312*K2**4 - 32*K2**3*K6 - 1184*K2**2*K3**2 - 64*K2**2*K4**2 + 1976*K2**2*K4 - 5690*K2**2 + 920*K2*K3*K5 + 48*K2*K4*K6 - 32*K3**4 - 3196*K3**2 - 664*K4**2 - 164*K5**2 - 6*K6**2 + 5710 |
| Genus of based matrix |
0 |
| Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}]] |
| If K is slice |
True |