Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1542

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,2,0,1,2,0,1,1,0,0,0,1,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1542']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+36t^5+120t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1542']
2-strand cable arrow polynomial of the knot is: -192*K1**6 - 128*K1**4*K2**2 + 1920*K1**4*K2 - 4496*K1**4 + 256*K1**3*K2*K3 + 32*K1**3*K3*K4 - 384*K1**3*K3 - 192*K1**2*K2**4 + 544*K1**2*K2**3 + 224*K1**2*K2**2*K4 - 4208*K1**2*K2**2 - 416*K1**2*K2*K4 + 7496*K1**2*K2 - 720*K1**2*K3**2 - 160*K1**2*K3*K5 - 112*K1**2*K4**2 - 4120*K1**2 + 448*K1*K2**3*K3 - 736*K1*K2**2*K3 - 64*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 5208*K1*K2*K3 + 2216*K1*K3*K4 + 384*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 568*K2**4 - 256*K2**2*K3**2 - 48*K2**2*K4**2 + 912*K2**2*K4 - 3638*K2**2 + 304*K2*K3*K5 + 16*K2*K4*K6 - 2264*K3**2 - 1086*K4**2 - 168*K5**2 - 2*K6**2 + 4380
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1542']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11468', 'vk6.11773', 'vk6.12790', 'vk6.13127', 'vk6.17052', 'vk6.17295', 'vk6.20857', 'vk6.20950', 'vk6.22266', 'vk6.22360', 'vk6.23774', 'vk6.28327', 'vk6.31229', 'vk6.31580', 'vk6.32804', 'vk6.35567', 'vk6.36018', 'vk6.39947', 'vk6.40120', 'vk6.42026', 'vk6.42968', 'vk6.43265', 'vk6.46492', 'vk6.46638', 'vk6.52221', 'vk6.53062', 'vk6.53378', 'vk6.55461', 'vk6.58854', 'vk6.59942', 'vk6.64401', 'vk6.69720']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U1U6O4O6U3U5U2
R3 orbit {'O1O2O3U4O5U1U6O4O6U3U5U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U4U1O5O6U5U3O4U6
Gauss code of K* O1O2O3U4U3U1O5U2O4O6U5U6
Gauss code of -K* O1O2O3U4U5O4O6U2O5U3U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 -1 1 1],[ 2 0 2 0 2 1 3],[-1 -2 0 -1 -1 0 0],[ 0 0 1 0 -1 0 1],[ 1 -2 1 1 0 2 1],[-1 -1 0 0 -2 0 -1],[-1 -3 0 -1 -1 1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -3],[-1 -1 0 0 0 -2 -1],[-1 0 0 0 -1 -1 -2],[ 0 1 0 1 0 -1 0],[ 1 1 2 1 1 0 -2],[ 2 3 1 2 0 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,3,0,0,2,1,1,1,2,1,0,2]
Phi over symmetry [-2,-1,0,1,1,1,-1,2,0,1,2,0,1,1,0,0,0,1,0,-1,0]
Phi of -K [-2,-1,0,1,1,1,-1,2,0,1,2,0,1,1,0,0,0,1,0,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,0,2,0,0,1,0,0,1,1,0,2,-1]
Phi of -K* [-2,-1,0,1,1,1,2,0,1,2,3,1,2,1,1,0,1,1,0,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+28t^4+83t^2+4
Outer characteristic polynomial t^7+36t^5+120t^3+7t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -192*K1**6 - 128*K1**4*K2**2 + 1920*K1**4*K2 - 4496*K1**4 + 256*K1**3*K2*K3 + 32*K1**3*K3*K4 - 384*K1**3*K3 - 192*K1**2*K2**4 + 544*K1**2*K2**3 + 224*K1**2*K2**2*K4 - 4208*K1**2*K2**2 - 416*K1**2*K2*K4 + 7496*K1**2*K2 - 720*K1**2*K3**2 - 160*K1**2*K3*K5 - 112*K1**2*K4**2 - 4120*K1**2 + 448*K1*K2**3*K3 - 736*K1*K2**2*K3 - 64*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 5208*K1*K2*K3 + 2216*K1*K3*K4 + 384*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 568*K2**4 - 256*K2**2*K3**2 - 48*K2**2*K4**2 + 912*K2**2*K4 - 3638*K2**2 + 304*K2*K3*K5 + 16*K2*K4*K6 - 2264*K3**2 - 1086*K4**2 - 168*K5**2 - 2*K6**2 + 4380
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {5}, {3, 4}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{6}, {1, 5}, {3, 4}, {2}]]
If K is slice False
Contact