Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1546

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,2,0,1,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1546']
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.120', '6.213', '6.216', '6.320', '6.322', '6.615', '6.617', '6.891', '6.951', '6.955', '6.1001', '6.1012', '6.1022', '6.1043', '6.1047', '6.1063', '6.1074', '6.1249', '6.1544', '6.1546', '6.1555', '6.1573', '6.1574', '6.1585', '6.1756', '6.1757', '6.1762', '6.1802', '6.1803', '6.1824', '6.1881', '6.1935']
Outer characteristic polynomial of the knot is: t^7+30t^5+73t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1546']
2-strand cable arrow polynomial of the knot is: -272*K1**4 - 64*K1**3*K3 + 512*K1**2*K2**3 - 3968*K1**2*K2**2 - 128*K1**2*K2*K4 + 5384*K1**2*K2 - 80*K1**2*K3**2 - 5028*K1**2 + 448*K1*K2**3*K3 - 736*K1*K2**2*K3 - 128*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 5968*K1*K2*K3 + 504*K1*K3*K4 + 88*K1*K4*K5 - 840*K2**4 - 464*K2**2*K3**2 - 48*K2**2*K4**2 + 1128*K2**2*K4 - 3612*K2**2 + 360*K2*K3*K5 + 32*K2*K4*K6 - 2048*K3**2 - 422*K4**2 - 60*K5**2 - 4*K6**2 + 3764
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1546']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73745', 'vk6.73861', 'vk6.74202', 'vk6.74824', 'vk6.75662', 'vk6.75864', 'vk6.76383', 'vk6.76881', 'vk6.78677', 'vk6.78864', 'vk6.79235', 'vk6.79712', 'vk6.80291', 'vk6.80418', 'vk6.80723', 'vk6.81076', 'vk6.81626', 'vk6.81808', 'vk6.82000', 'vk6.82321', 'vk6.82371', 'vk6.82731', 'vk6.83229', 'vk6.84246', 'vk6.84327', 'vk6.84408', 'vk6.84493', 'vk6.85651', 'vk6.86539', 'vk6.87565', 'vk6.88282', 'vk6.89407']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2U1O4O6U5U3U6
R3 orbit {'O1O2O3U4O5U2U1O4O6U5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U5O4O6U3U2O5U6
Gauss code of K* O1O2O3U4U5U2O6U1O5O4U6U3
Gauss code of -K* O1O2O3U1U4O5O6U3O4U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 -1 0 2],[ 1 0 0 2 0 1 2],[ 1 0 0 1 1 0 2],[-1 -2 -1 0 0 -1 2],[ 1 0 -1 0 0 0 1],[ 0 -1 0 1 0 0 1],[-2 -2 -2 -2 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -2 -1 -1 -2 -2],[-1 2 0 -1 0 -1 -2],[ 0 1 1 0 0 0 -1],[ 1 1 0 0 0 -1 0],[ 1 2 1 0 1 0 0],[ 1 2 2 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,2,1,1,2,2,1,0,1,2,0,0,1,1,0,0]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,2,0,1,1,0,0,1]
Phi of -K [-1,-1,-1,0,1,2,-1,0,1,1,1,0,1,2,2,0,0,1,0,1,-1]
Phi of K* [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,2,0,1,1,0,0,1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,0,1,0,0,1,2,1,2,2,1,1,2]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 5z^2+22z+25
Enhanced Jones-Krushkal polynomial -2w^4z^2+7w^3z^2-4w^3z+26w^2z+25w
Inner characteristic polynomial t^6+22t^4+32t^2+1
Outer characteristic polynomial t^7+30t^5+73t^3+13t
Flat arrow polynomial -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
2-strand cable arrow polynomial -272*K1**4 - 64*K1**3*K3 + 512*K1**2*K2**3 - 3968*K1**2*K2**2 - 128*K1**2*K2*K4 + 5384*K1**2*K2 - 80*K1**2*K3**2 - 5028*K1**2 + 448*K1*K2**3*K3 - 736*K1*K2**2*K3 - 128*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 5968*K1*K2*K3 + 504*K1*K3*K4 + 88*K1*K4*K5 - 840*K2**4 - 464*K2**2*K3**2 - 48*K2**2*K4**2 + 1128*K2**2*K4 - 3612*K2**2 + 360*K2*K3*K5 + 32*K2*K4*K6 - 2048*K3**2 - 422*K4**2 - 60*K5**2 - 4*K6**2 + 3764
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact