Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1556

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,2,0,2,0,0,1,0,1,-1,1,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1556']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^7+47t^5+256t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1556']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 320*K1**4*K2 - 768*K1**4 + 160*K1**3*K2*K3 - 64*K1**3*K3 + 640*K1**2*K2**5 - 1984*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3648*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 6832*K1**2*K2**2 - 352*K1**2*K2*K4 + 6112*K1**2*K2 - 32*K1**2*K3**2 - 3844*K1**2 + 1152*K1*K2**3*K3 - 1472*K1*K2**2*K3 - 192*K1*K2**2*K5 + 4504*K1*K2*K3 + 136*K1*K3*K4 + 8*K1*K4*K5 - 704*K2**6 + 288*K2**4*K4 - 2304*K2**4 - 192*K2**2*K3**2 - 16*K2**2*K4**2 + 1624*K2**2*K4 - 1360*K2**2 + 56*K2*K3*K5 - 872*K3**2 - 164*K4**2 - 4*K5**2 + 2634
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1556']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10128', 'vk6.10177', 'vk6.10322', 'vk6.10417', 'vk6.17669', 'vk6.17716', 'vk6.24236', 'vk6.24282', 'vk6.29911', 'vk6.29950', 'vk6.30015', 'vk6.30072', 'vk6.36502', 'vk6.36600', 'vk6.43605', 'vk6.43711', 'vk6.51612', 'vk6.51641', 'vk6.51684', 'vk6.51715', 'vk6.55711', 'vk6.55768', 'vk6.60285', 'vk6.60341', 'vk6.63329', 'vk6.63344', 'vk6.63375', 'vk6.63394', 'vk6.65413', 'vk6.65454', 'vk6.68557', 'vk6.68585']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U3U6O4O6U1U2U5
R3 orbit {'O1O2O3U4O5U3U6O4O6U1U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2U3O5O6U5U1O4U6
Gauss code of K* O1O2O3U1U2U4O5U3O4O6U5U6
Gauss code of -K* O1O2O3U4U5O4O6U1O5U6U2U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 -1 2 1],[ 2 0 1 1 0 2 3],[ 0 -1 0 1 -2 1 1],[ 0 -1 -1 0 0 0 1],[ 1 0 2 0 0 3 1],[-2 -2 -1 0 -3 0 -2],[-1 -3 -1 -1 -1 2 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -2 0 -1 -3 -2],[-1 2 0 -1 -1 -1 -3],[ 0 0 1 0 -1 0 -1],[ 0 1 1 1 0 -2 -1],[ 1 3 1 0 2 0 0],[ 2 2 3 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,2,0,1,3,2,1,1,1,3,1,0,1,2,1,0]
Phi over symmetry [-2,-1,0,0,1,2,-1,1,2,0,2,0,0,1,0,1,-1,1,1,1,1]
Phi of -K [-2,-1,0,0,1,2,1,1,1,0,2,-1,1,1,0,-1,0,1,0,2,-1]
Phi of K* [-2,-1,0,0,1,2,-1,1,2,0,2,0,0,1,0,1,-1,1,1,1,1]
Phi of -K* [-2,-1,0,0,1,2,0,1,1,3,2,0,2,1,3,-1,1,0,1,1,2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+22z+25
Enhanced Jones-Krushkal polynomial -2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w
Inner characteristic polynomial t^6+37t^4+188t^2
Outer characteristic polynomial t^7+47t^5+256t^3+8t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial -192*K1**4*K2**2 + 320*K1**4*K2 - 768*K1**4 + 160*K1**3*K2*K3 - 64*K1**3*K3 + 640*K1**2*K2**5 - 1984*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3648*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 6832*K1**2*K2**2 - 352*K1**2*K2*K4 + 6112*K1**2*K2 - 32*K1**2*K3**2 - 3844*K1**2 + 1152*K1*K2**3*K3 - 1472*K1*K2**2*K3 - 192*K1*K2**2*K5 + 4504*K1*K2*K3 + 136*K1*K3*K4 + 8*K1*K4*K5 - 704*K2**6 + 288*K2**4*K4 - 2304*K2**4 - 192*K2**2*K3**2 - 16*K2**2*K4**2 + 1624*K2**2*K4 - 1360*K2**2 + 56*K2*K3*K5 - 872*K3**2 - 164*K4**2 - 4*K5**2 + 2634
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact