Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1557

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,2,3,0,2,2,1,0,0,1,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1557']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+34t^5+107t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1557']
2-strand cable arrow polynomial of the knot is: 160*K1**4*K2 - 720*K1**4 - 512*K1**3*K3 + 192*K1**2*K2**3 - 1104*K1**2*K2**2 + 160*K1**2*K2*K3**2 + 3424*K1**2*K2 - 368*K1**2*K3**2 - 64*K1**2*K3*K5 - 2872*K1**2 + 96*K1*K2**3*K3 - 640*K1*K2**2*K3 - 64*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 2920*K1*K2*K3 + 544*K1*K3*K4 + 56*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 280*K2**4 - 32*K2**3*K6 - 208*K2**2*K3**2 - 16*K2**2*K4**2 + 440*K2**2*K4 - 2006*K2**2 + 200*K2*K3*K5 + 16*K2*K4*K6 - 1052*K3**2 - 198*K4**2 - 52*K5**2 - 2*K6**2 + 2044
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1557']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4416', 'vk6.4511', 'vk6.5802', 'vk6.5929', 'vk6.7867', 'vk6.7974', 'vk6.9289', 'vk6.9408', 'vk6.10152', 'vk6.10225', 'vk6.10370', 'vk6.17885', 'vk6.17948', 'vk6.18293', 'vk6.18630', 'vk6.24392', 'vk6.24692', 'vk6.25180', 'vk6.30047', 'vk6.30110', 'vk6.30889', 'vk6.31014', 'vk6.32077', 'vk6.32198', 'vk6.36911', 'vk6.37278', 'vk6.37371', 'vk6.43827', 'vk6.44128', 'vk6.44452', 'vk6.50514', 'vk6.50595', 'vk6.51120', 'vk6.51981', 'vk6.52078', 'vk6.55848', 'vk6.56080', 'vk6.60578', 'vk6.60916', 'vk6.65987']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U3U6O4O6U1U5U2
R3 orbit {'O1O2O3U4O5U3U6O4O6U1U5U2', 'O1O2O3U4U2O5U6O4O6U1U3U5'}
R3 orbit length 2
Gauss code of -K O1O2O3U2U4U3O5O6U5U1O4U6
Gauss code of K* O1O2O3U1U3U4O5U2O4O6U5U6
Gauss code of -K* O1O2O3U4U5O4O6U2O5U6U1U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 -1 1 1],[ 2 0 2 1 0 1 3],[-1 -2 0 0 -2 0 0],[ 0 -1 0 0 0 0 1],[ 1 0 2 0 0 2 1],[-1 -1 0 0 -2 0 -1],[-1 -3 0 -1 -1 1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -3],[-1 -1 0 0 0 -2 -1],[-1 0 0 0 0 -2 -2],[ 0 1 0 0 0 0 -1],[ 1 1 2 2 0 0 0],[ 2 3 1 2 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,3,0,0,2,1,0,2,2,0,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,2,3,0,2,2,1,0,0,1,0,-1,0]
Phi of -K [-2,-1,0,1,1,1,1,1,0,1,2,1,1,0,0,0,1,1,0,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,0,2,0,0,1,0,1,0,1,1,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,1,2,3,0,2,2,1,0,0,1,0,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial z^2+14z+25
Enhanced Jones-Krushkal polynomial w^3z^2+14w^2z+25w
Inner characteristic polynomial t^6+26t^4+78t^2
Outer characteristic polynomial t^7+34t^5+107t^3+3t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial 160*K1**4*K2 - 720*K1**4 - 512*K1**3*K3 + 192*K1**2*K2**3 - 1104*K1**2*K2**2 + 160*K1**2*K2*K3**2 + 3424*K1**2*K2 - 368*K1**2*K3**2 - 64*K1**2*K3*K5 - 2872*K1**2 + 96*K1*K2**3*K3 - 640*K1*K2**2*K3 - 64*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 2920*K1*K2*K3 + 544*K1*K3*K4 + 56*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 280*K2**4 - 32*K2**3*K6 - 208*K2**2*K3**2 - 16*K2**2*K4**2 + 440*K2**2*K4 - 2006*K2**2 + 200*K2*K3*K5 + 16*K2*K4*K6 - 1052*K3**2 - 198*K4**2 - 52*K5**2 - 2*K6**2 + 2044
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {3, 5}, {1, 4}, {2}]]
If K is slice False
Contact