Gauss code |
O1O2O3O4O5U1O6U3U5U6U4U2 |
R3 orbit |
{'O1O2O3O4O5U1O6U3U5U6U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U2U6U1U3O6U5 |
Gauss code of K* |
O1O2O3O4O5U6U5U1U4U2O6U3 |
Gauss code of -K* |
O1O2O3O4O5U3O6U4U2U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 1 -2 2 1 2],[ 4 0 4 1 3 2 2],[-1 -4 0 -3 1 0 2],[ 2 -1 3 0 3 1 2],[-2 -3 -1 -3 0 -1 1],[-1 -2 0 -1 1 0 1],[-2 -2 -2 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 2 1 1 -2 -4],[-2 0 1 -1 -1 -3 -3],[-2 -1 0 -1 -2 -2 -2],[-1 1 1 0 0 -1 -2],[-1 1 2 0 0 -3 -4],[ 2 3 2 1 3 0 -1],[ 4 3 2 2 4 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,-1,2,4,-1,1,1,3,3,1,2,2,2,0,1,2,3,4,1] |
Phi over symmetry |
[-4,-2,1,1,2,2,1,1,3,3,4,0,2,1,2,0,0,-1,0,0,-1] |
Phi of -K |
[-4,-2,1,1,2,2,1,1,3,3,4,0,2,1,2,0,0,-1,0,0,-1] |
Phi of K* |
[-2,-2,-1,-1,2,4,-1,-1,0,2,4,0,0,1,3,0,0,1,2,3,1] |
Phi of -K* |
[-4,-2,1,1,2,2,1,2,4,2,3,1,3,2,3,0,1,1,2,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
3z^2+22z+33 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+22w^2z+33w |
Inner characteristic polynomial |
t^6+65t^4+26t^2 |
Outer characteristic polynomial |
t^7+95t^5+103t^3+5t |
Flat arrow polynomial |
4*K1**3 - 4*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 + 3*K2 + K3 + K4 + 3 |
2-strand cable arrow polynomial |
-64*K1**6 + 672*K1**4*K2 - 2208*K1**4 + 480*K1**3*K2*K3 + 32*K1**3*K3*K4 - 448*K1**3*K3 - 192*K1**2*K2**4 + 416*K1**2*K2**3 + 224*K1**2*K2**2*K4 - 4320*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 608*K1**2*K2*K4 + 7640*K1**2*K2 - 848*K1**2*K3**2 - 32*K1**2*K3*K5 - 144*K1**2*K4**2 - 5740*K1**2 + 640*K1*K2**3*K3 - 1248*K1*K2**2*K3 - 64*K1*K2**2*K5 + 64*K1*K2*K3**3 - 416*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6952*K1*K2*K3 - 32*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1824*K1*K3*K4 + 296*K1*K4*K5 + 32*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**6 + 64*K2**4*K4 - 688*K2**4 - 32*K2**3*K6 - 672*K2**2*K3**2 - 48*K2**2*K4**2 + 1280*K2**2*K4 - 8*K2**2*K6**2 - 4566*K2**2 - 64*K2*K3**2*K4 + 496*K2*K3*K5 + 224*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 48*K3**4 + 72*K3**2*K6 - 2548*K3**2 + 24*K3*K4*K7 - 958*K4**2 - 176*K5**2 - 114*K6**2 - 16*K7**2 - 2*K8**2 + 4870 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |