Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1563

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,-1,2,1,2,1,0,1,0,1,1,0,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1563']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+20t^5+88t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1563']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 608*K1**4*K2 - 5600*K1**4 - 384*K1**3*K3 - 3232*K1**2*K2**2 + 10520*K1**2*K2 - 4524*K1**2 - 128*K1*K2**2*K3 + 3816*K1*K2*K3 + 64*K1*K3*K4 - 256*K2**4 + 320*K2**2*K4 - 4144*K2**2 - 1076*K3**2 - 96*K4**2 + 4174
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1563']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20024', 'vk6.20072', 'vk6.21296', 'vk6.21354', 'vk6.27071', 'vk6.27137', 'vk6.28776', 'vk6.28826', 'vk6.38472', 'vk6.38530', 'vk6.40661', 'vk6.40727', 'vk6.45352', 'vk6.45430', 'vk6.47121', 'vk6.47172', 'vk6.56823', 'vk6.56877', 'vk6.57957', 'vk6.58015', 'vk6.61337', 'vk6.61407', 'vk6.62513', 'vk6.62564', 'vk6.66543', 'vk6.66577', 'vk6.67332', 'vk6.67368', 'vk6.69185', 'vk6.69229', 'vk6.69936', 'vk6.69970']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U6U1O4O6U3U5U2
R3 orbit {'O1O2O3U4O5U6U1O4O6U3U5U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U4U1O5O6U3U5O4U6
Gauss code of K* O1O2O3U4U3U1O5U2O6O4U5U6
Gauss code of -K* O1O2O3U4U5O6O4U2O5U3U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 0 -1 1 0],[ 1 0 1 -1 1 0 2],[-1 -1 0 -1 -1 0 0],[ 0 1 1 0 -1 0 1],[ 1 -1 1 1 0 2 0],[-1 0 0 0 -2 0 -1],[ 0 -2 0 -1 0 1 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 0 0 -1 0 -2],[-1 0 0 -1 0 -1 -1],[ 0 0 1 0 1 1 -1],[ 0 1 0 -1 0 -2 0],[ 1 0 1 -1 2 0 1],[ 1 2 1 1 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,0,0,1,0,2,1,0,1,1,-1,-1,1,2,0,-1]
Phi over symmetry [-1,-1,0,0,1,1,-1,-1,2,1,2,1,0,1,0,1,1,0,0,1,0]
Phi of -K [-1,-1,0,0,1,1,-1,-1,2,1,2,1,0,1,0,1,1,0,0,1,0]
Phi of K* [-1,-1,0,0,1,1,0,0,1,0,2,1,0,1,1,-1,1,-1,0,2,-1]
Phi of -K* [-1,-1,0,0,1,1,-1,0,1,1,2,2,-1,1,0,-1,0,1,1,0,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial z^2+21z+39
Enhanced Jones-Krushkal polynomial w^3z^2+21w^2z+39w
Inner characteristic polynomial t^6+16t^4+58t^2+1
Outer characteristic polynomial t^7+20t^5+88t^3+7t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -64*K1**6 + 608*K1**4*K2 - 5600*K1**4 - 384*K1**3*K3 - 3232*K1**2*K2**2 + 10520*K1**2*K2 - 4524*K1**2 - 128*K1*K2**2*K3 + 3816*K1*K2*K3 + 64*K1*K3*K4 - 256*K2**4 + 320*K2**2*K4 - 4144*K2**2 - 1076*K3**2 - 96*K4**2 + 4174
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}]]
If K is slice True
Contact