Gauss code |
O1O2O3U4O5U6U2O4O6U1U5U3 |
R3 orbit |
{'O1O2O3U4O5U6U2O4O6U1U5U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U4U3O5O6U2U5O4U6 |
Gauss code of K* |
O1O2O3U1U4U3O5U2O6O4U5U6 |
Gauss code of -K* |
O1O2O3U4U5O6O4U2O5U1U6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 2 -1 1 0],[ 2 0 2 3 0 1 2],[ 0 -2 0 0 0 -1 1],[-2 -3 0 0 -2 -1 -1],[ 1 0 0 2 0 2 0],[-1 -1 1 1 -2 0 -1],[ 0 -2 -1 1 0 1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -1 -2 -3],[-1 1 0 1 -1 -2 -1],[ 0 0 -1 0 1 0 -2],[ 0 1 1 -1 0 0 -2],[ 1 2 2 0 0 0 0],[ 2 3 1 2 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,0,1,2,3,-1,1,2,1,-1,0,2,0,2,0] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,1,2,1,1,0,2,0,2,-1,1,0,1,0,1] |
Phi of -K |
[-2,-1,0,0,1,2,1,0,0,2,1,1,1,0,1,-1,2,2,0,1,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,1,2,1,1,0,2,0,2,-1,1,0,1,0,1] |
Phi of -K* |
[-2,-1,0,0,1,2,0,2,2,1,3,0,0,2,2,-1,1,1,-1,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
z^2+18z+33 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+18w^2z+33w |
Inner characteristic polynomial |
t^6+31t^4+163t^2 |
Outer characteristic polynomial |
t^7+41t^5+245t^3+4t |
Flat arrow polynomial |
4*K1**3 - 12*K1**2 - 4*K1*K2 - K1 + 6*K2 + K3 + 7 |
2-strand cable arrow polynomial |
-64*K1**4*K2**2 + 384*K1**4*K2 - 1440*K1**4 + 128*K1**3*K2*K3 - 288*K1**3*K3 + 352*K1**2*K2**3 - 3312*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 160*K1**2*K2*K4 + 6736*K1**2*K2 - 160*K1**2*K3**2 - 16*K1**2*K4**2 - 5236*K1**2 + 128*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 160*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 5280*K1*K2*K3 + 864*K1*K3*K4 + 80*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 608*K2**4 - 32*K2**3*K6 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 1320*K2**2*K4 - 4174*K2**2 + 256*K2*K3*K5 + 16*K2*K4*K6 - 1880*K3**2 - 608*K4**2 - 84*K5**2 - 2*K6**2 + 4070 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |