Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1570

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,2,2,0,1,1,2,0,0,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1570', '7.37777']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+22t^5+29t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1570', '7.37777']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 128*K1**4*K2**2 + 672*K1**4*K2 - 1856*K1**4 + 64*K1**3*K2*K3 - 160*K1**3*K3 + 608*K1**2*K2**3 - 2896*K1**2*K2**2 - 96*K1**2*K2*K4 + 4000*K1**2*K2 - 1324*K1**2 - 480*K1*K2**2*K3 + 1968*K1*K2*K3 + 56*K1*K3*K4 - 600*K2**4 + 488*K2**2*K4 - 1112*K2**2 - 300*K3**2 - 54*K4**2 + 1276
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1570']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11052', 'vk6.11132', 'vk6.12214', 'vk6.12323', 'vk6.16417', 'vk6.19230', 'vk6.19325', 'vk6.19523', 'vk6.19618', 'vk6.22716', 'vk6.22817', 'vk6.26040', 'vk6.26093', 'vk6.26424', 'vk6.26515', 'vk6.30629', 'vk6.30726', 'vk6.31933', 'vk6.34770', 'vk6.35487', 'vk6.35939', 'vk6.38112', 'vk6.38129', 'vk6.38872', 'vk6.41070', 'vk6.42385', 'vk6.42916', 'vk6.43216', 'vk6.44633', 'vk6.44755', 'vk6.45633', 'vk6.51845', 'vk6.52807', 'vk6.55195', 'vk6.58220', 'vk6.59578', 'vk6.62779', 'vk6.64716', 'vk6.66289', 'vk6.66293']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U1U5O6O4U2U3U6
R3 orbit {'O1O2U3O4O5U1U5O3O6U2U6U4', 'O1O2O3U4O5U1U5O6O4U2U3U6'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U1U2O5O4U6U3O6U5
Gauss code of K* O1O2O3U4U1U2O5U6O4O6U3U5
Gauss code of -K* O1O2O3U4U1O5O6U5O4U2U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 1 1],[ 2 0 1 2 1 1 1],[ 1 -1 0 1 1 0 1],[-1 -2 -1 0 -1 0 0],[ 0 -1 -1 1 0 1 1],[-1 -1 0 0 -1 0 0],[-1 -1 -1 0 -1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 0 0 -1 0 -1],[-1 0 0 0 -1 -1 -1],[-1 0 0 0 -1 -1 -2],[ 0 1 1 1 0 -1 -1],[ 1 0 1 1 1 0 -1],[ 2 1 1 2 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,0,0,1,0,1,0,1,1,1,1,1,2,1,1,1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,2,2,0,1,1,2,0,0,0,0,0,0]
Phi of -K [-2,-1,0,1,1,1,0,1,1,2,2,0,1,1,2,0,0,0,0,0,0]
Phi of K* [-1,-1,-1,0,1,2,0,0,0,1,1,0,0,1,2,0,2,2,0,1,0]
Phi of -K* [-2,-1,0,1,1,1,1,1,1,1,2,1,0,1,1,1,1,1,0,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 2z^2+15z+23
Enhanced Jones-Krushkal polynomial 2w^3z^2+15w^2z+23w
Inner characteristic polynomial t^6+14t^4+16t^2+1
Outer characteristic polynomial t^7+22t^5+29t^3+4t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -128*K1**6 - 128*K1**4*K2**2 + 672*K1**4*K2 - 1856*K1**4 + 64*K1**3*K2*K3 - 160*K1**3*K3 + 608*K1**2*K2**3 - 2896*K1**2*K2**2 - 96*K1**2*K2*K4 + 4000*K1**2*K2 - 1324*K1**2 - 480*K1*K2**2*K3 + 1968*K1*K2*K3 + 56*K1*K3*K4 - 600*K2**4 + 488*K2**2*K4 - 1112*K2**2 - 300*K3**2 - 54*K4**2 + 1276
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {3, 4}, {1}]]
If K is slice False
Contact