Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1574

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,1,2,0,1,0,1,1,1,0,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1574']
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.120', '6.213', '6.216', '6.320', '6.322', '6.615', '6.617', '6.891', '6.951', '6.955', '6.1001', '6.1012', '6.1022', '6.1043', '6.1047', '6.1063', '6.1074', '6.1249', '6.1544', '6.1546', '6.1555', '6.1573', '6.1574', '6.1585', '6.1756', '6.1757', '6.1762', '6.1802', '6.1803', '6.1824', '6.1881', '6.1935']
Outer characteristic polynomial of the knot is: t^7+20t^5+40t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1574']
2-strand cable arrow polynomial of the knot is: 384*K1**4*K2 - 3184*K1**4 + 896*K1**3*K2*K3 + 32*K1**3*K3*K4 - 992*K1**3*K3 - 3888*K1**2*K2**2 - 1408*K1**2*K2*K4 + 6552*K1**2*K2 - 1232*K1**2*K3**2 - 176*K1**2*K4**2 - 3564*K1**2 + 64*K1*K2**3*K3 - 192*K1*K2**2*K3 - 64*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 6760*K1*K2*K3 + 2176*K1*K3*K4 + 168*K1*K4*K5 - 40*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 504*K2**2*K4 - 3108*K2**2 + 96*K2*K3*K5 + 32*K2*K4*K6 - 2200*K3**2 - 702*K4**2 - 36*K5**2 - 4*K6**2 + 3364
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1574']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16992', 'vk6.17234', 'vk6.20212', 'vk6.21500', 'vk6.23395', 'vk6.23702', 'vk6.27404', 'vk6.29022', 'vk6.35459', 'vk6.35900', 'vk6.38817', 'vk6.41000', 'vk6.42892', 'vk6.43192', 'vk6.45574', 'vk6.47349', 'vk6.55161', 'vk6.55407', 'vk6.57048', 'vk6.58153', 'vk6.59538', 'vk6.59880', 'vk6.61552', 'vk6.62730', 'vk6.64971', 'vk6.65177', 'vk6.66665', 'vk6.67496', 'vk6.68260', 'vk6.68415', 'vk6.69312', 'vk6.70072']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2U1O6O4U6U3U5
R3 orbit {'O1O2O3U4O5U2U1O6O4U6U3U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U5O6O5U3U2O4U6
Gauss code of K* O1O2O3U4U5U2O6U3O5O4U1U6
Gauss code of -K* O1O2O3U4U3O5O6U1O4U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 0 2 -1],[ 1 0 0 1 0 2 -1],[ 1 0 0 0 1 1 -1],[-1 -1 0 0 0 0 -1],[ 0 0 -1 0 0 1 -1],[-2 -2 -1 0 -1 0 0],[ 1 1 1 1 1 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 0 -1 -2],[-1 0 0 0 -1 0 -1],[ 0 1 0 0 -1 -1 0],[ 1 0 1 1 0 1 1],[ 1 1 0 1 -1 0 0],[ 1 2 1 0 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,1,0,1,2,0,1,0,1,1,1,0,-1,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,0,1,2,0,1,0,1,1,1,0,-1,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,0,1,3,0,0,2,2,1,1,1,1,1,1]
Phi of K* [-2,-1,0,1,1,1,1,1,1,2,3,1,1,2,1,1,0,0,0,-1,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,1,2,1,1,1,0,1,0,1,0,1,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 6z^2+25z+27
Enhanced Jones-Krushkal polynomial -2w^4z^2+8w^3z^2+25w^2z+27w
Inner characteristic polynomial t^6+12t^4+19t^2+4
Outer characteristic polynomial t^7+20t^5+40t^3+13t
Flat arrow polynomial -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
2-strand cable arrow polynomial 384*K1**4*K2 - 3184*K1**4 + 896*K1**3*K2*K3 + 32*K1**3*K3*K4 - 992*K1**3*K3 - 3888*K1**2*K2**2 - 1408*K1**2*K2*K4 + 6552*K1**2*K2 - 1232*K1**2*K3**2 - 176*K1**2*K4**2 - 3564*K1**2 + 64*K1*K2**3*K3 - 192*K1*K2**2*K3 - 64*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 6760*K1*K2*K3 + 2176*K1*K3*K4 + 168*K1*K4*K5 - 40*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 504*K2**2*K4 - 3108*K2**2 + 96*K2*K3*K5 + 32*K2*K4*K6 - 2200*K3**2 - 702*K4**2 - 36*K5**2 - 4*K6**2 + 3364
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact