Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1575

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,2,2,1,1,2,2,1,0,0,-1,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1575']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+20t^5+50t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1575']
2-strand cable arrow polynomial of the knot is: -192*K1**2*K2**4 + 1952*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5968*K1**2*K2**2 - 224*K1**2*K2*K4 + 5576*K1**2*K2 - 64*K1**2*K4**2 - 4248*K1**2 + 480*K1*K2**3*K3 - 1472*K1*K2**2*K3 - 96*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 5376*K1*K2*K3 + 576*K1*K3*K4 + 176*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 2040*K2**4 - 400*K2**2*K3**2 - 48*K2**2*K4**2 + 1832*K2**2*K4 - 2382*K2**2 + 408*K2*K3*K5 + 16*K2*K4*K6 - 1504*K3**2 - 522*K4**2 - 120*K5**2 - 2*K6**2 + 3112
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1575']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17004', 'vk6.17245', 'vk6.20525', 'vk6.21921', 'vk6.23411', 'vk6.23718', 'vk6.27977', 'vk6.29448', 'vk6.35480', 'vk6.35929', 'vk6.39379', 'vk6.41566', 'vk6.42913', 'vk6.43212', 'vk6.45952', 'vk6.47633', 'vk6.55185', 'vk6.55427', 'vk6.57391', 'vk6.58561', 'vk6.59564', 'vk6.59898', 'vk6.62051', 'vk6.63043', 'vk6.64983', 'vk6.65193', 'vk6.66936', 'vk6.67791', 'vk6.68271', 'vk6.68425', 'vk6.69544', 'vk6.70246']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2U1O6O4U6U5U3
R3 orbit {'O1O2O3U4O5U2U1O6O4U6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U5O6O5U3U2O4U6
Gauss code of K* O1O2O3U4U5U3O6U2O5O4U1U6
Gauss code of -K* O1O2O3U4U3O5O6U2O4U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 0 1 -1],[ 1 0 0 2 0 1 -1],[ 1 0 0 1 1 0 -1],[-2 -2 -1 0 0 -1 -1],[ 0 0 -1 0 0 0 -1],[-1 -1 0 1 0 0 0],[ 1 1 1 1 1 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 0 -1 -1 -2],[-1 1 0 0 0 0 -1],[ 0 0 0 0 -1 -1 0],[ 1 1 0 1 0 1 1],[ 1 1 0 1 -1 0 0],[ 1 2 1 0 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,1,0,1,1,2,0,0,0,1,1,1,0,-1,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,2,2,1,1,2,2,1,0,0,-1,0,1]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,0,2,2,0,0,2,2,1,1,1,1,2,0]
Phi of K* [-2,-1,0,1,1,1,0,2,1,2,2,1,1,2,2,1,0,0,-1,0,1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,1,2,1,1,0,1,1,0,1,0,0,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 8z^2+25z+19
Enhanced Jones-Krushkal polynomial -2w^4z^2+10w^3z^2-2w^3z+27w^2z+19w
Inner characteristic polynomial t^6+12t^4+21t^2+1
Outer characteristic polynomial t^7+20t^5+50t^3+9t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -192*K1**2*K2**4 + 1952*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5968*K1**2*K2**2 - 224*K1**2*K2*K4 + 5576*K1**2*K2 - 64*K1**2*K4**2 - 4248*K1**2 + 480*K1*K2**3*K3 - 1472*K1*K2**2*K3 - 96*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 5376*K1*K2*K3 + 576*K1*K3*K4 + 176*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 2040*K2**4 - 400*K2**2*K3**2 - 48*K2**2*K4**2 + 1832*K2**2*K4 - 2382*K2**2 + 408*K2*K3*K5 + 16*K2*K4*K6 - 1504*K3**2 - 522*K4**2 - 120*K5**2 - 2*K6**2 + 3112
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact