Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1576

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,1,2,2,0,0,1,1,0,1,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1576']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+22t^5+27t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1576']
2-strand cable arrow polynomial of the knot is: 128*K1**4*K2**3 - 192*K1**4*K2**2 + 96*K1**4*K2 - 208*K1**4 - 128*K1**3*K2**2*K3 + 256*K1**3*K2*K3 - 192*K1**3*K3 - 1536*K1**2*K2**4 + 3136*K1**2*K2**3 - 7104*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 608*K1**2*K2*K4 + 5552*K1**2*K2 - 112*K1**2*K3**2 - 16*K1**2*K4**2 - 4048*K1**2 + 1760*K1*K2**3*K3 - 640*K1*K2**2*K3 - 64*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 5216*K1*K2*K3 + 456*K1*K3*K4 + 40*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 2552*K2**4 - 608*K2**2*K3**2 - 48*K2**2*K4**2 + 1344*K2**2*K4 - 1238*K2**2 + 176*K2*K3*K5 + 16*K2*K4*K6 - 1236*K3**2 - 330*K4**2 - 28*K5**2 - 2*K6**2 + 2776
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1576']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71572', 'vk6.71685', 'vk6.72101', 'vk6.72309', 'vk6.74031', 'vk6.74594', 'vk6.76072', 'vk6.76786', 'vk6.77192', 'vk6.77291', 'vk6.77493', 'vk6.77651', 'vk6.79014', 'vk6.79592', 'vk6.80553', 'vk6.81005', 'vk6.81103', 'vk6.81143', 'vk6.81163', 'vk6.81211', 'vk6.81313', 'vk6.81458', 'vk6.82260', 'vk6.83502', 'vk6.83830', 'vk6.83980', 'vk6.85393', 'vk6.86327', 'vk6.87105', 'vk6.88015', 'vk6.88338', 'vk6.88968']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2U3O6O4U1U5U6
R3 orbit {'O1O2O3U4O5U2U3O6O4U1U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U3O6O4U1U2O5U6
Gauss code of K* O1O2O3U1U4U5O6U2O4O5U3U6
Gauss code of -K* O1O2O3U4U1O5O6U2O4U5U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 1 1],[ 2 0 0 2 0 2 1],[ 1 0 0 1 0 1 0],[-1 -2 -1 0 -1 0 0],[ 0 0 0 1 0 1 0],[-1 -2 -1 0 -1 0 1],[-1 -1 0 0 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 0 0 0 -1],[-1 0 0 0 -1 -1 -2],[ 0 1 0 1 0 0 0],[ 1 1 0 1 0 0 0],[ 2 2 1 2 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,2,0,0,0,1,1,1,2,0,0,0]
Phi over symmetry [-2,-1,0,1,1,1,0,0,1,2,2,0,0,1,1,0,1,1,-1,0,0]
Phi of -K [-2,-1,0,1,1,1,1,2,1,1,2,1,1,1,2,0,0,1,0,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,2,2,0,0,1,1,0,1,1,1,2,1]
Phi of -K* [-2,-1,0,1,1,1,0,0,1,2,2,0,0,1,1,0,1,1,-1,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial -2w^4z^2+6w^3z^2-6w^3z+23w^2z+19w
Inner characteristic polynomial t^6+14t^4+10t^2
Outer characteristic polynomial t^7+22t^5+27t^3+7t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial 128*K1**4*K2**3 - 192*K1**4*K2**2 + 96*K1**4*K2 - 208*K1**4 - 128*K1**3*K2**2*K3 + 256*K1**3*K2*K3 - 192*K1**3*K3 - 1536*K1**2*K2**4 + 3136*K1**2*K2**3 - 7104*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 608*K1**2*K2*K4 + 5552*K1**2*K2 - 112*K1**2*K3**2 - 16*K1**2*K4**2 - 4048*K1**2 + 1760*K1*K2**3*K3 - 640*K1*K2**2*K3 - 64*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 5216*K1*K2*K3 + 456*K1*K3*K4 + 40*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 2552*K2**4 - 608*K2**2*K3**2 - 48*K2**2*K4**2 + 1344*K2**2*K4 - 1238*K2**2 + 176*K2*K3*K5 + 16*K2*K4*K6 - 1236*K3**2 - 330*K4**2 - 28*K5**2 - 2*K6**2 + 2776
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact