Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1580

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,1,3,-1,0,1,1,0,0,1,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1580']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+27t^5+55t^3+21t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1580']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 224*K1**4*K2 - 1008*K1**4 + 96*K1**3*K2*K3 - 32*K1**3*K3 + 544*K1**2*K2**3 - 3392*K1**2*K2**2 - 320*K1**2*K2*K4 + 5472*K1**2*K2 - 144*K1**2*K3**2 - 4156*K1**2 + 96*K1*K2**3*K3 - 896*K1*K2**2*K3 - 64*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 4344*K1*K2*K3 + 864*K1*K3*K4 + 160*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 1424*K2**4 - 32*K2**3*K6 - 400*K2**2*K3**2 - 112*K2**2*K4**2 + 2088*K2**2*K4 - 3382*K2**2 + 576*K2*K3*K5 + 112*K2*K4*K6 - 1528*K3**2 - 904*K4**2 - 236*K5**2 - 42*K6**2 + 3630
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1580']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11279', 'vk6.11359', 'vk6.12540', 'vk6.12653', 'vk6.18358', 'vk6.18696', 'vk6.24802', 'vk6.25259', 'vk6.30955', 'vk6.31080', 'vk6.32131', 'vk6.32252', 'vk6.36992', 'vk6.37442', 'vk6.44172', 'vk6.44491', 'vk6.52047', 'vk6.52132', 'vk6.52886', 'vk6.52951', 'vk6.56142', 'vk6.56368', 'vk6.60663', 'vk6.61008', 'vk6.63660', 'vk6.63707', 'vk6.64088', 'vk6.64135', 'vk6.65806', 'vk6.66058', 'vk6.68802', 'vk6.69010']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U2U5O6O4U1U6U3
R3 orbit {'O1O2O3U4O5U2U5O6O4U1U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U3O5O4U6U2O6U5
Gauss code of K* O1O2O3U1U4U3O5U6O4O6U2U5
Gauss code of -K* O1O2O3U4U2O5O6U5O4U1U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 2 0 1 0],[ 2 0 0 3 1 1 0],[ 1 0 0 1 0 1 -1],[-2 -3 -1 0 -1 0 -1],[ 0 -1 0 1 0 1 0],[-1 -1 -1 0 -1 0 0],[ 0 0 1 1 0 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -1 -1 -3],[-1 0 0 0 -1 -1 -1],[ 0 1 0 0 0 1 0],[ 0 1 1 0 0 0 -1],[ 1 1 1 -1 0 0 0],[ 2 3 1 0 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,1,1,1,3,0,1,1,1,0,-1,0,0,1,0]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,1,3,-1,0,1,1,0,0,1,1,1,0]
Phi of -K [-2,-1,0,0,1,2,1,1,2,2,1,1,2,1,2,0,0,1,1,1,1]
Phi of K* [-2,-1,0,0,1,2,1,1,1,2,1,0,1,1,2,0,1,1,2,2,1]
Phi of -K* [-2,-1,0,0,1,2,0,0,1,1,3,-1,0,1,1,0,0,1,1,1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+20z+29
Enhanced Jones-Krushkal polynomial 3w^3z^2-4w^3z+24w^2z+29w
Inner characteristic polynomial t^6+17t^4+27t^2+9
Outer characteristic polynomial t^7+27t^5+55t^3+21t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -64*K1**4*K2**2 + 224*K1**4*K2 - 1008*K1**4 + 96*K1**3*K2*K3 - 32*K1**3*K3 + 544*K1**2*K2**3 - 3392*K1**2*K2**2 - 320*K1**2*K2*K4 + 5472*K1**2*K2 - 144*K1**2*K3**2 - 4156*K1**2 + 96*K1*K2**3*K3 - 896*K1*K2**2*K3 - 64*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 4344*K1*K2*K3 + 864*K1*K3*K4 + 160*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 1424*K2**4 - 32*K2**3*K6 - 400*K2**2*K3**2 - 112*K2**2*K4**2 + 2088*K2**2*K4 - 3382*K2**2 + 576*K2*K3*K5 + 112*K2*K4*K6 - 1528*K3**2 - 904*K4**2 - 236*K5**2 - 42*K6**2 + 3630
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact