Min(phi) over symmetries of the knot is: [-2,0,1,1,1,1,1,0,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1581'] |
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866'] |
Outer characteristic polynomial of the knot is: t^5+11t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1581'] |
2-strand cable arrow polynomial of the knot is: -576*K1**6 + 1408*K1**4*K2 - 3776*K1**4 + 288*K1**3*K2*K3 - 448*K1**3*K3 - 3136*K1**2*K2**2 - 224*K1**2*K2*K4 + 7184*K1**2*K2 - 1440*K1**2*K3**2 - 64*K1**2*K3*K5 - 432*K1**2*K4**2 - 4356*K1**2 - 480*K1*K2**2*K3 - 32*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 5776*K1*K2*K3 + 2400*K1*K3*K4 + 664*K1*K4*K5 - 152*K2**4 - 192*K2**2*K3**2 - 112*K2**2*K4**2 + 848*K2**2*K4 - 4188*K2**2 + 488*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2440*K3**2 - 1094*K4**2 - 316*K5**2 - 52*K6**2 + 4612 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1581'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4130', 'vk6.4161', 'vk6.5368', 'vk6.5399', 'vk6.7498', 'vk6.7525', 'vk6.8999', 'vk6.9030', 'vk6.12422', 'vk6.12455', 'vk6.13352', 'vk6.13573', 'vk6.13604', 'vk6.14263', 'vk6.14710', 'vk6.14750', 'vk6.15196', 'vk6.15866', 'vk6.15906', 'vk6.30827', 'vk6.30860', 'vk6.32011', 'vk6.32044', 'vk6.33078', 'vk6.33109', 'vk6.33846', 'vk6.34308', 'vk6.48476', 'vk6.50261', 'vk6.53540', 'vk6.53929', 'vk6.54267'] |
The R3 orbit of minmal crossing diagrams contains:
|
The diagrammatic symmetry type of this knot is c.
|
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click
here
to check the fillings
|