Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1591

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,0,1,2,2,0,0,-1,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1591']
Arrow polynomial of the knot is: -14*K1**2 - 8*K1*K2 + 4*K1 + 7*K2 + 4*K3 + 8
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1591', '6.1654']
Outer characteristic polynomial of the knot is: t^7+30t^5+114t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1591']
2-strand cable arrow polynomial of the knot is: -192*K1**6 - 192*K1**4*K2**2 + 864*K1**4*K2 - 3760*K1**4 + 960*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1376*K1**3*K3 + 128*K1**2*K2**3 - 5744*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 800*K1**2*K2*K4 + 11944*K1**2*K2 - 1424*K1**2*K3**2 - 64*K1**2*K3*K5 - 112*K1**2*K4**2 - 8492*K1**2 + 416*K1*K2**3*K3 - 960*K1*K2**2*K3 - 256*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 10448*K1*K2*K3 + 2264*K1*K3*K4 + 320*K1*K4*K5 - 792*K2**4 - 592*K2**2*K3**2 - 128*K2**2*K4**2 + 1560*K2**2*K4 - 6680*K2**2 + 696*K2*K3*K5 + 128*K2*K4*K6 - 3668*K3**2 - 1070*K4**2 - 248*K5**2 - 32*K6**2 + 7012
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1591']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20006', 'vk6.20080', 'vk6.21278', 'vk6.21362', 'vk6.27057', 'vk6.27145', 'vk6.28762', 'vk6.28834', 'vk6.38454', 'vk6.38538', 'vk6.40643', 'vk6.40735', 'vk6.45338', 'vk6.45438', 'vk6.47107', 'vk6.47180', 'vk6.56805', 'vk6.56901', 'vk6.57939', 'vk6.58039', 'vk6.61323', 'vk6.61431', 'vk6.62499', 'vk6.62588', 'vk6.66525', 'vk6.66601', 'vk6.67314', 'vk6.67392', 'vk6.69171', 'vk6.69253', 'vk6.69922', 'vk6.69994']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U6U1O6O4U2U5U3
R3 orbit {'O1O2O3U4O5U6U1O6O4U2U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U2O5O6U3U6O4U5
Gauss code of K* O1O2O3U4U1U3O5U2O6O4U6U5
Gauss code of -K* O1O2O3U4U5O6O5U2O4U1U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 0 1 -1],[ 1 0 -1 1 2 0 1],[ 1 1 0 2 1 0 1],[-2 -1 -2 0 -1 -1 -2],[ 0 -2 -1 1 0 1 -1],[-1 0 0 1 -1 0 -1],[ 1 -1 -1 2 1 1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 -1 0 0 -1],[ 0 1 1 0 -2 -1 -1],[ 1 1 0 2 0 -1 1],[ 1 2 0 1 1 0 1],[ 1 2 1 1 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,1,1,1,2,2,1,0,0,1,2,1,1,1,-1,-1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,0,1,2,2,0,0,-1,-1,-1,1]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,0,2,1,-1,-1,2,2,0,1,1,0,1,0]
Phi of K* [-2,-1,0,1,1,1,0,1,1,1,2,0,1,2,2,0,0,-1,-1,-1,1]
Phi of -K* [-1,-1,-1,0,1,2,-1,-1,1,1,2,-1,2,0,1,1,0,2,1,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial z^2+22z+41
Enhanced Jones-Krushkal polynomial w^3z^2+22w^2z+41w
Inner characteristic polynomial t^6+22t^4+69t^2+1
Outer characteristic polynomial t^7+30t^5+114t^3+8t
Flat arrow polynomial -14*K1**2 - 8*K1*K2 + 4*K1 + 7*K2 + 4*K3 + 8
2-strand cable arrow polynomial -192*K1**6 - 192*K1**4*K2**2 + 864*K1**4*K2 - 3760*K1**4 + 960*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1376*K1**3*K3 + 128*K1**2*K2**3 - 5744*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 800*K1**2*K2*K4 + 11944*K1**2*K2 - 1424*K1**2*K3**2 - 64*K1**2*K3*K5 - 112*K1**2*K4**2 - 8492*K1**2 + 416*K1*K2**3*K3 - 960*K1*K2**2*K3 - 256*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 10448*K1*K2*K3 + 2264*K1*K3*K4 + 320*K1*K4*K5 - 792*K2**4 - 592*K2**2*K3**2 - 128*K2**2*K4**2 + 1560*K2**2*K4 - 6680*K2**2 + 696*K2*K3*K5 + 128*K2*K4*K6 - 3668*K3**2 - 1070*K4**2 - 248*K5**2 - 32*K6**2 + 7012
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact