Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1593

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,2,1,1,0,1,1,-1,2,2,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1593']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+37t^5+172t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1593']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 512*K1**4*K2 - 2160*K1**4 + 160*K1**3*K2*K3 - 416*K1**3*K3 - 2112*K1**2*K2**2 - 256*K1**2*K2*K4 + 6560*K1**2*K2 - 336*K1**2*K3**2 - 5364*K1**2 + 96*K1*K2**2*K3*K4 - 736*K1*K2**2*K3 - 32*K1*K2**2*K5 - 576*K1*K2*K3*K4 + 5080*K1*K2*K3 - 96*K1*K2*K4*K5 + 1640*K1*K3*K4 + 416*K1*K4*K5 + 24*K1*K5*K6 - 112*K2**4 - 304*K2**2*K3**2 - 112*K2**2*K4**2 + 1296*K2**2*K4 - 4748*K2**2 + 800*K2*K3*K5 + 112*K2*K4*K6 - 2456*K3**2 - 1180*K4**2 - 380*K5**2 - 28*K6**2 + 4770
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1593']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17107', 'vk6.17350', 'vk6.20575', 'vk6.21984', 'vk6.23500', 'vk6.23839', 'vk6.28041', 'vk6.29500', 'vk6.35641', 'vk6.36082', 'vk6.39451', 'vk6.41652', 'vk6.43007', 'vk6.43319', 'vk6.46039', 'vk6.47707', 'vk6.55258', 'vk6.55510', 'vk6.57441', 'vk6.58612', 'vk6.59666', 'vk6.60014', 'vk6.62116', 'vk6.63086', 'vk6.65058', 'vk6.65253', 'vk6.66977', 'vk6.67842', 'vk6.68321', 'vk6.68471', 'vk6.69596', 'vk6.70289']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U6U2O6O4U1U5U3
R3 orbit {'O1O2O3U4O5U6U2O6O4U1U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U3O5O6U2U6O4U5
Gauss code of K* O1O2O3U1U4U3O5U2O6O4U6U5
Gauss code of -K* O1O2O3U4U5O6O5U2O4U1U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 2 0 1 -1],[ 2 0 2 3 1 1 1],[ 0 -2 0 0 1 -1 0],[-2 -3 0 0 -1 -1 -2],[ 0 -1 -1 1 0 1 -1],[-1 -1 1 1 -1 0 -1],[ 1 -1 0 2 1 1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -1 -2 -3],[-1 1 0 1 -1 -1 -1],[ 0 0 -1 0 1 0 -2],[ 0 1 1 -1 0 -1 -1],[ 1 2 1 0 1 0 -1],[ 2 3 1 2 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,0,1,2,3,-1,1,1,1,-1,0,2,1,1,1]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,2,1,1,0,1,1,-1,2,2,0,1,0]
Phi of -K [-2,-1,0,0,1,2,0,0,1,2,1,1,0,1,1,-1,2,2,0,1,0]
Phi of K* [-2,-1,0,0,1,2,0,1,2,1,1,0,2,1,2,-1,0,1,1,0,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,2,1,3,1,0,1,2,-1,1,1,-1,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial z^2+20z+37
Enhanced Jones-Krushkal polynomial w^3z^2+20w^2z+37w
Inner characteristic polynomial t^6+27t^4+106t^2
Outer characteristic polynomial t^7+37t^5+172t^3+5t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -64*K1**4*K2**2 + 512*K1**4*K2 - 2160*K1**4 + 160*K1**3*K2*K3 - 416*K1**3*K3 - 2112*K1**2*K2**2 - 256*K1**2*K2*K4 + 6560*K1**2*K2 - 336*K1**2*K3**2 - 5364*K1**2 + 96*K1*K2**2*K3*K4 - 736*K1*K2**2*K3 - 32*K1*K2**2*K5 - 576*K1*K2*K3*K4 + 5080*K1*K2*K3 - 96*K1*K2*K4*K5 + 1640*K1*K3*K4 + 416*K1*K4*K5 + 24*K1*K5*K6 - 112*K2**4 - 304*K2**2*K3**2 - 112*K2**2*K4**2 + 1296*K2**2*K4 - 4748*K2**2 + 800*K2*K3*K5 + 112*K2*K4*K6 - 2456*K3**2 - 1180*K4**2 - 380*K5**2 - 28*K6**2 + 4770
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact