Gauss code |
O1O2O3O4O5O6U1U3U4U2U6U5 |
R3 orbit |
{'O1O2O3O4O5O6U1U3U4U2U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U2U1U5U3U4U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U4U2U3U6U5 |
Gauss code of -K* |
O1O2O3O4O5O6U2U1U4U5U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -1 -2 0 4 4],[ 5 0 3 1 2 5 4],[ 1 -3 0 -1 1 4 3],[ 2 -1 1 0 1 3 2],[ 0 -2 -1 -1 0 2 1],[-4 -5 -4 -3 -2 0 0],[-4 -4 -3 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 4 4 0 -1 -2 -5],[-4 0 0 -1 -3 -2 -4],[-4 0 0 -2 -4 -3 -5],[ 0 1 2 0 -1 -1 -2],[ 1 3 4 1 0 -1 -3],[ 2 2 3 1 1 0 -1],[ 5 4 5 2 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-4,0,1,2,5,0,1,3,2,4,2,4,3,5,1,1,2,1,3,1] |
Phi over symmetry |
[-5,-2,-1,0,4,4,1,3,2,4,5,1,1,2,3,1,3,4,1,2,0] |
Phi of -K |
[-5,-2,-1,0,4,4,2,1,3,4,5,0,1,3,4,0,1,2,2,3,0] |
Phi of K* |
[-4,-4,0,1,2,5,0,2,1,3,4,3,2,4,5,0,1,3,0,1,2] |
Phi of -K* |
[-5,-2,-1,0,4,4,1,3,2,4,5,1,1,2,3,1,3,4,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-2t^4+t^2+t |
Normalized Jones-Krushkal polynomial |
7z^2+26z+25 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2+26w^2z+25w |
Inner characteristic polynomial |
t^6+101t^4+34t^2+1 |
Outer characteristic polynomial |
t^7+163t^5+155t^3+6t |
Flat arrow polynomial |
-2*K1**2 + 4*K1*K2**2 - 6*K1*K2 - 2*K1*K4 + K1 + K2 + 3*K3 + 2 |
2-strand cable arrow polynomial |
128*K1**4*K2 - 864*K1**4 + 384*K1**3*K2*K3 - 576*K1**3*K3 - 256*K1**2*K2**2*K3**2 - 2384*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 1312*K1**2*K2*K4 + 4712*K1**2*K2 - 352*K1**2*K3**2 - 64*K1**2*K3*K5 - 224*K1**2*K4**2 - 4068*K1**2 + 288*K1*K2**3*K3 + 1120*K1*K2**2*K3*K4 - 1184*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 + 64*K1*K2**2*K6*K7 + 32*K1*K2*K3**3 - 320*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 5184*K1*K2*K3 - 96*K1*K2*K4*K5 - 96*K1*K2*K4*K7 - 64*K1*K2*K5*K6 + 1944*K1*K3*K4 + 608*K1*K4*K5 + 8*K1*K5*K6 + 32*K1*K6*K7 - 72*K2**4 - 896*K2**2*K3**2 + 64*K2**2*K3*K4*K7 - 32*K2**2*K3*K7 - 32*K2**2*K4**4 + 64*K2**2*K4**3 + 32*K2**2*K4**2*K8 - 888*K2**2*K4**2 - 32*K2**2*K4*K8 + 1800*K2**2*K4 - 32*K2**2*K5**2 - 32*K2**2*K6**2 - 64*K2**2*K7**2 - 8*K2**2*K8**2 - 3378*K2**2 - 128*K2*K3**2*K4 - 96*K2*K3*K4*K5 + 680*K2*K3*K5 - 32*K2*K4**2*K6 + 472*K2*K4*K6 + 144*K2*K5*K7 + 16*K2*K6*K8 + 8*K3**2*K6 - 1852*K3**2 + 32*K3*K4*K7 - 16*K4**4 + 16*K4**2*K8 - 1214*K4**2 - 344*K5**2 - 54*K6**2 - 32*K7**2 - 4*K8**2 + 3360 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |