Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1602

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,1,2,3,0,1,1,1,-1,0,0,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1602']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+30t^5+29t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1602', '7.41936']
2-strand cable arrow polynomial of the knot is: -192*K1**6 - 128*K1**4*K2**2 + 1120*K1**4*K2 - 3712*K1**4 + 128*K1**3*K2*K3 - 576*K1**3*K3 + 512*K1**2*K2**3 - 2768*K1**2*K2**2 - 160*K1**2*K2*K4 + 6224*K1**2*K2 - 160*K1**2*K3**2 - 2208*K1**2 - 192*K1*K2**2*K3 + 2544*K1*K2*K3 + 136*K1*K3*K4 - 344*K2**4 + 240*K2**2*K4 - 2064*K2**2 - 568*K3**2 - 46*K4**2 + 2212
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1602']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11264', 'vk6.11342', 'vk6.12529', 'vk6.12640', 'vk6.17618', 'vk6.18909', 'vk6.18987', 'vk6.19345', 'vk6.19638', 'vk6.24079', 'vk6.24171', 'vk6.25507', 'vk6.25611', 'vk6.26121', 'vk6.26539', 'vk6.30938', 'vk6.31061', 'vk6.32118', 'vk6.32237', 'vk6.36421', 'vk6.37638', 'vk6.37694', 'vk6.43523', 'vk6.44774', 'vk6.52030', 'vk6.52117', 'vk6.52942', 'vk6.56487', 'vk6.56659', 'vk6.65401', 'vk6.66112', 'vk6.66150']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U5U3O5U2O6U4U6
R3 orbit {'O1O2O3U1O4U5U3O5U2O6U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4U2O6U1U6O5U3
Gauss code of K* O1O2U1O3U4O5O4U6U3U2O6U5
Gauss code of -K* O1O2U1O3U4O5O4U2O6U5U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 1 -1 1],[ 2 0 2 1 2 1 0],[ 0 -2 0 1 2 -1 1],[-1 -1 -1 0 0 -1 1],[-1 -2 -2 0 0 -1 1],[ 1 -1 1 1 1 0 1],[-1 0 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -1],[-1 -1 0 -1 -1 -1 0],[-1 0 1 0 -2 -1 -2],[ 0 1 1 2 0 -1 -2],[ 1 1 1 1 1 0 -1],[ 2 1 0 2 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,1,1,1,1,0,2,1,2,1,2,1]
Phi over symmetry [-2,-1,0,1,1,1,0,0,1,2,3,0,1,1,1,-1,0,0,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,0,0,1,2,3,0,1,1,1,-1,0,0,0,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,0,1,3,0,-1,1,1,0,1,2,0,0,0]
Phi of -K* [-2,-1,0,1,1,1,1,2,0,1,2,1,1,1,1,1,1,2,-1,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 2z^2+19z+31
Enhanced Jones-Krushkal polynomial 2w^3z^2+19w^2z+31w
Inner characteristic polynomial t^6+22t^4+16t^2+1
Outer characteristic polynomial t^7+30t^5+29t^3+5t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -192*K1**6 - 128*K1**4*K2**2 + 1120*K1**4*K2 - 3712*K1**4 + 128*K1**3*K2*K3 - 576*K1**3*K3 + 512*K1**2*K2**3 - 2768*K1**2*K2**2 - 160*K1**2*K2*K4 + 6224*K1**2*K2 - 160*K1**2*K3**2 - 2208*K1**2 - 192*K1*K2**2*K3 + 2544*K1*K2*K3 + 136*K1*K3*K4 - 344*K2**4 + 240*K2**2*K4 - 2064*K2**2 - 568*K3**2 - 46*K4**2 + 2212
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {4}, {1, 3}]]
If K is slice False
Contact